

Brain changes in response to faces in the first year John E. Richards, Maggie W. Guy, Nicole Zieber, Wanze Xie, & Jane E. Roberts ICIS, 2016

http://jerlab.psych.sc.edu/jerpdf/icis2016facesbrain.pdf

Guy, M.W., Zieber, N., & Richards, J.E. (in press). The cortical development of specialized face processing in infancy. Child Development. (Friday morning poster)

Guy, M.W., Richards, J.E., Tonnsen, B., & Roberts, J.E. (submitted; concurrent poster). Neural correlates of face processing associated with risk of autism spectrum disorders in infancy

Xie, W., & Richards, J.E. (2016). Effects of interstimulus intervals on behavioral, heart rate, and event-related potential indices of infant engagement and sustained attention. Psychophysiology Abstract:

Young infants in the first year have dramatic changes in their processing of faces, going from simple perceptual sensitivity through recognition and preference for familiar faces. It is likely that these changes are caused by, or accompanied by, changes in the brain areas known in adults to be involved in face processing. We report data from infants from 3 through 12 months of age that shows the development of scalp-recorded event-related-potentials in response to faces and objects, in the brain areas supporting these ERP components, and in the effect of attention on the face processing / brain development. This work quantifies the specialization of brain areas for face processing in the infant.

Acknowledgements Maggie Guy (faces, FXS and S-ASD)

Nicki Zieber (faces)

Jane Roberts (TD vx FXS vs S-ASD)

Wanze Xie (faces)

Michael Stevens—RA who does all my MRI scans (infants, children, adolescents and adults), applies EGI cap, and otherwise runs the lab infrastructure

Lisa Freund, NICHD NIH, NICHD R37-18942 "The development of sustained attention"

Adult fMRI, and N290 source analysis, show FFG and other areas active during face processing. "Fusiform face area" N170 Component (MRI) (ERP)

Face Processing in Adulthood

- Show face specific ERP responses
- N170
 - Negative peak over posterior scalp regions
 - ~170 ms after stimulus onset
 - Right lateralized
 - Greater amplitude & shorter latency to faces than objects (e.g., Bentin et al., 1996; Eimer, 1998; Rossion et al., 2000)

Fusiform Face Area localization

N170 source localization

Face-sensitive areas in the adult brain Fusiform face area Kanwisher, McDermott, & Chun, 1997

Face Processing

Subcortical system

- Core system
- Extended system

Infant Face-Sensitive ERP Components?

The goal of this study: What are the cortical sources of these infant ERP components?

Method

Procedure

- ECG recording & highdensity EEG recording
 - EG| 128 channel recording
 - Referenced to the vertex
 - 250 Hz sampling rate
 - Bandpass filters . 1-100 Hz
 - $100k\Omega$ impedence

Method

- Procedure
 - Infant is seated on mother's lap in darkened room
 - A video camera records infant's looking
 - Experimenter
 controls stimulus
 presentation in an
 adjacent room

Methods

- Participants:
 - 14 4.5-month-old infants
 - 19 6-month-old infants
 - 15 7.5-month-old infants
- EEG recording:
 - Used a high-density EGI
 128-channel HydroCel
 Geodesic Sensor Net
 - Recorded 124 channels of EEG, 2 channels of EOG, & 2 channels of ECG

Methods

- **Present faces and toys**
- **Record EEG and compute average ERP components**
- Realistic head model from structural MRI of infants
- Electrodes, atlas, lead field, realistic cortical sources
- **Current density reconstruction for each ERP slice**

Participants

- Typical development (months)
- 4.5 (N = 25, Guy et al., Xie & Richards)
- 6.0 (N = 26, Guy et al., Xie & Richards)
- 7.5 (N = 19, Guy et al., Richards unpublished)
- 9 (N = 10, Richards, unpublished)
- 12 (N = 24, Guy et al., submitted; Richards, unpublished)

Methods

- Stimuli & Procedure
 - Infant is seated on mother's lap in darkened room
 - A video camera records infant's looking
 - Experimenter controls stimulus presentation in an adjacent room
 - A series of brief stimulus presentations (500 ms) and paired comparison trials (4
 - Mother's face
 - Unfamiliar female's face
 - Own toy
 - Unfamiliar toy

Fig. 1. Sample stimulus presentations in a trial block. Each block included two 4 s visual paired comparisons (faces, toys) and two 500 ms brief presentations of each of the face (mother's, stranger's) and toy (familiar, novel) stimuli. There was a variable inter-trial interval of 500-1500 ms between each slide.

High-Density Scalp-Recorded EEG

Figure 1. Grand average ERP activity across HGSN Electrodes and virtual 10-10 electrode clusters

Figure 1. Grand average ERP activity across HGSN Electrodes and virtual 10-10 electrode clusters

Topographical Scalp Potential Maps, Peak P1 +/- 20 ms Faces \frown Toys **Faces minus Tovs** 4.5 6.0 7.5 9.0 12.0

ERP at Peak P1, +/- 40 ms, Faces and Toys

"Model Preparation" for attention

Figure 3a—Topographical scalp potential maps for peak of P1 (-20 to +20 ms), for attention effects, separate for ages

Figure 3a—Topographical scalp potential maps for peak of P1 (-20 to +20 ms), for attention effects, averaged over age

🔳 occipitalAttnFaces (Mean), 1 Standard Error 📕 occipitalAttnToys (Mean), 1 Standard Error 📕 occipitalInattn (Mean), 1 Standard Error

Figure 1. Grand average ERP activity across HGSN Electrodes and virtual 10-10 electrode clusters

Topographical Scalp Potential Maps, Peak N290 +/- 20 ms Faces

Faces minus Toys

ERP at Peak N290, +/- 40 ms, Faces and Toys

Left Left Left Left Left 4.5 7.5 12 6 9 2 0 -2 n290attentionface (Mean) -4 -6 Right Right Right Right Right 4.5 6 7.5 9 12 2 0 -2 -4 -6 Toys Faces InAttn Faces InAttn Toys Faces InAttn Toys Faces InAttn Toys Faces InAttn Toys trialtype

n290attentionface (Mean), 1 Standard Error In 290attentiontoy (Mean), 1 Standard Error

n290Inattention (Mean), 1 Standard Error

N290 ERP Component Parietal-Lateral Scalp in Response to Faces and Toys over Age during Attention

Figure nna—Topographical scalp potential maps for peak of N290 (-20 to +20 ms), for attention faces, inattention, and difference Faces during attention

6.0

7.5

Individual Structural MRI and Source Model

3.0T Siemens Trio System at McCausland Center for Brain Imaging, University of South Carolina

What's Inside a Baby's Head

Individual Structural MRI and Source Model

3.0T Siemens Trio System at McCausland Center for Brain Imaging, University of South Carolina

What's Inside a Baby's Head

Temporal Lobe ROIs

Figure 1. Electrode placement for a six-month old infant, and the 6-month-old average MRI template

Current generation on scalp, forward model

Recovering sources from scalp current, inverse model

Current generation on scalp, forward model

Recovering sources from scalp current, inverse model

Spatio-Temporal Electrical Functional Neuroimaging

Recovering sources from scalp current, inverse model

"Inverse Model"

Recovering sources from scalp current, inverse model

Spatio-temporal functional electrical neuroimaging

ERP Source Analysis Spatio-Temporal Electrical Functional Neuroimaging

Figure 4. The EMSE and Fieldtrip source models, with HGSN128 electrodes

Figure 2. Regions of interests (ROIs) shown on the 6-month-old average age-appropriate template.

CDR Peak N290 Latency from -40 ms to peak to +40 ms

-40

-32

-8

-16

Peak

Mean Filter Coefficients for Peak of N290

Average CDR at Peak Latency

CDR Peak N290 Latency from -40 ms to peak to +40 ms

-16

-40

-24

Quadratic Polynomial Coefficients for Peak of N290

Quadratic CDR at Peak Latency

-8

Peak

P1 source localization

- Lingual gyrus, and other bilateral areas, has peak consistent with P1, larger to faces than toys at two older ages (quadratic effects)
- Other areas show face-toy differences, especially at older ages, but no peak (no quadratic effects).
- The posterior cingulate area shows enhanced activity and face-toy difference at peak for 12 month olds.

Lingual Gyrus CDR Activity at Peak P1 Faces, 12 months

Lateral Posterior ROIs

Lateral Inferior Occipital Gyrus

Lingual Gyrus CDR at P1 Peak, Faces and Toys

Lingual Gyrus, ROI over Time at Peak P1

Activity at P1 Latency to Faces, 4.5 to 12 Months

4.5

6.0

7.5

9.0

12.0

Sources of P1 ERP Component in Response to Faces and Toys over Age

Activity in Posterior Cingulate Gyrus at P1 Latency, 12 Months

Sources of P1 ERP Component during Attention to Faces and Toys over Age

Sources of P1 ERP Component during Attention to Faces and Toys over Age

N290 source localization

- "Middle" fusiform gyrus, larger to faces than toys in older infants, and has peak consistent with the source area for the N290
- Some other areas show face-toy difference (e.g., lateral-posterior), but amplitude is not as large and peak is less pronounced or absent, or is smaller with no peak (frontal)
- Effects in anterior temporal area (temporal pole, anterior fusiform gyrus, parahippocampal gyrus) appear to be a precursor to extended ERP activity in P400 and Nc

Middle Fusiform Gyrus CDR Activity at Peak N290 Latency, Faces, 12 months

Temporal Lobe ROIs

Middle Fusiform Gyrus CDR Activity at Peak N290 Latency, Faces, 12 months

Middle Fusiform Gyrus CDR Activity at Peak N290 Latency, Faces, 12 months

Activity in Middle Fusiform Gyrus at N290 Latency, 12 Months Comparison with "Fusiform Gyrus" Atlas ROI

Face- and Toy-Related Activity, Middle FFG, N290 Latency, 12 Months

Middle FFG, ROI over Time at Peak N290

Activity at N290 Latency to Faces, 4.5 to 12 Months

Face-Related Activity in Parahippocampal Gyrus at N290 Latency, 12 Months

Sources of N290 ERP Component in Response to Faces and Toys over Age

Sources of N290 ERP Component, Faces-Attention, Toys-Attention, Inattention over Age

Sources of N290 ERP Component, Faces-Attention, Toys-Attention, Inattention over Age

🗖 cdrpermmfacesattn (Mean), 1 Standard Error 🛛 E cdrpermmtoysattn (Mean), 1 Standard Error 🗖 cdrpermminattn (Mean), 1 Standard Error

P400 Nc Response to Faces and Toys over Age

P400 Nc Response to Faces and Toys over Age

P400 Nc Response to Faces and Toys over Age

ERP from 350 to 900 ms Posterior, P400 (Red) Frontal-Central, Inverted Nc (Black)

Posterior Cingulate Gyrus CDR Activity at Peak P400 Latency, Faces, 12 months

Posterior Cingulate Gyrus, ROI over Time at Peak P400

Posterior Cingulate Gyrus CDR Activity at Peak P400 Latency

P1 source localization

- Lingual gyrus, and other bilateral areas, has peak consistent with P1, larger to faces than toys at two older ages (quadratic effects)
- Other areas show face-toy differences, especially at older ages, but no peak (no quadratic effects).
- The posterior cingulate area shows enhanced activity and face-toy difference at peak for 12 month olds.

N290 source localization

- "Middle" fusiform gyrus, larger to faces than toys in older infants, and has peak consistent with the source area for the N290
- Some other areas show face-toy difference (e.g., lateral-posterior), but amplitude is not as large and peak is less pronounced or absent, or is smaller with no peak (frontal)
- Effects in anterior temporal area (temporal pole, anterior fusiform gyrus, parahippocampal gyrus) appear to be a precursor to extended ERP activity in P400 and Nc

P400 source localization

- Posterior cingulate gyrus, larger to toys than to faces, has peak consistent with the peak for the P400
- Distinct timing and sources for the Nc:
- Anterior temporal areas (temporal pole, anterior fusiform gyrus, parahippocampal gyrus)
- Prefronal areas (subcallosal gyrus, ventral AC)

Results Summary

- P1: Lingual gyrus, and other bilateral areas, has peak consistent with P1, larger to faces than toys at two older ages
- N290: "Middle" fusiform gyrus, larger to faces than toys in older infants, and has peak consistent with the source area for the N290. Other areas show activity, possibly precursor to later components
- P400: Posterior cingulate gyrus, larger to toys than to faces, has peak consistent with the peak for the P400

Summary

- P1: Lingual gyrus, and other bilateral areas, has peak consistent with P1, larger to faces than toys at two older ages
- N290: "Middle" fusiform gyrus, larger to faces than toys in older infants, and has peak consistent with the source area for the N290. Other areas show activity, possibly precursor to later components
- P400: Posterior cingulate gyrus, larger to toys than to faces, has peak consistent with the peak for the P400