

Heart-Defined Sustained Attention in Infant Siblings of Children with Autism

Bridgette Tonnsen^{1, 2}, John Richards, ¹ Erica Mazur^{1, 3}, Jane Roberts¹

¹University of South Carolina ²Medical University of South Carolina ³Louisiana State University

2015 Gatlinburg Conference, New Orleans, LA

INTRODUCTION

2

- Autism spectrum disorder (ASD) affects 1:42 U.S. males
 - Impaired social communication, repetitive behaviors
 - No biomarker
- Predicting ASD in infants \rightarrow early detection, prevention
- Infant siblings of children with ASD (ASIBs) = 19% risk
 - Over 100 ASIB studies in last decade
- ASIBs at risk for multiple outcomes
 - Warrants mechanism-specific research

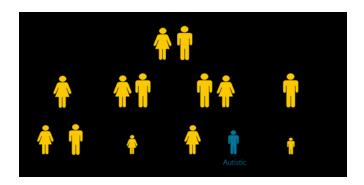
Two complementary approaches to "high risk" studies:

- **1.** Examine prodromal features of ASD
 - Outcome: identify predictors of later diagnoses

Two complementary approaches to "high risk" studies:

- 1. Examine prodromal features of ASD
 - Outcome: identify predictors of later diagnoses

2. Examine endophenotypes

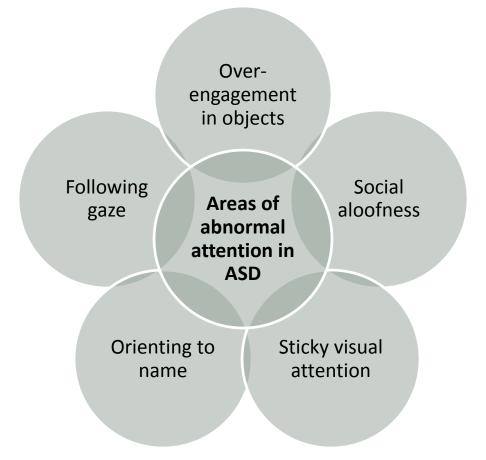

Endophenotype: a measurable, heritable trait that associated with a clinical profile (Gottesman & Gould, 2003)

- Characterize broader phenotype
- Outcome: characterize genetic associations, risk

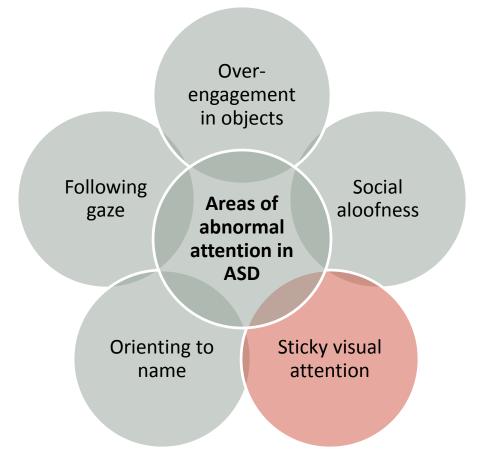
Broader Autism Phenotype: subthreshold autismassociated features in first-degree relatives of individuals with autism (Baron-Cohen, 2004; Folstein & Rutter, 1977)

Discrete Trait

Continuum



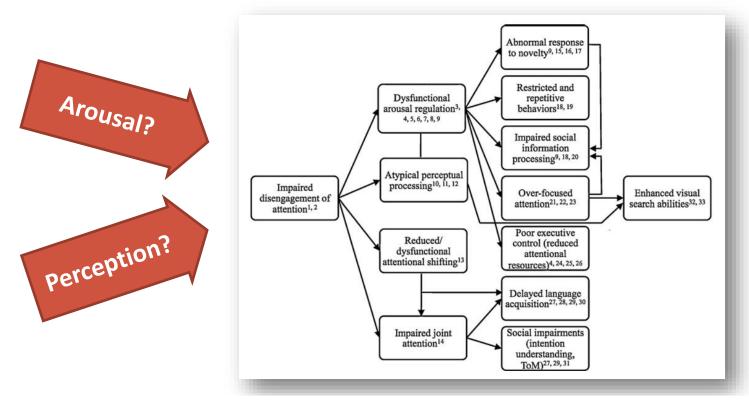
Attention in ASD


Is abnormal attention an **endophenotype** of ASD?

[7]

Attention in ASD

Is abnormal attention an **endophenotype** of ASD?


8

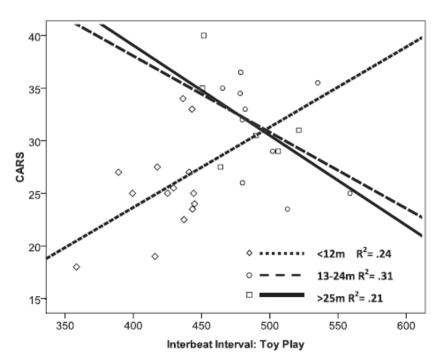
Orienting and Disengagement

 Infants at risk for ASD show impaired disengagement from 6-12 months of age (Elsabbagh et al., 2009, 2013; Zwaigenbaum et al., 2005; Elison et al., 2013)

Orienting and Disengagement

 Infants at risk for ASD show impaired disengagement from 6-12 months of age (Elsabbagh et al., 2009, 2013; Zwaigenbaum et al., 2005; Elison et al., 2013)

B. Keehn et al. / Neuroscience and Biobehavioral Reviews 37 (2013) 164-183


Arousal

 Abnormal polyvagal functioning implicated in ASD (Bal et al., 2010; Klusek et al., 2015; Quintana et al., 2012)

Polyvagal Theory: Human autonomic system has evolved to maintain behavioral and psychosocial characteristics (Porges, 1995)

- Parasympathetic activity = regulated by vagus
- Vagus also controls
 - Facial muscles
 - Visceral processes (e.g. metabolic function, digestion)
- Abnormal arousal, facial expression, visceral processes in ASD

Arousal

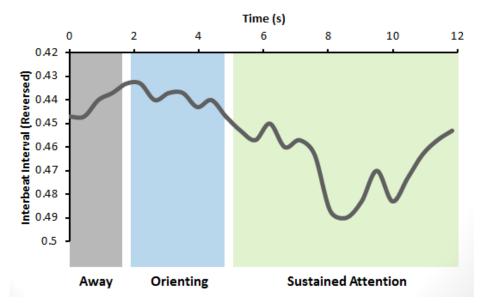


Figure 2. Cross-sectional interaction between age and interbeat interval (IBI) during toy play in the group with fragile X syndrome. CARS = Childhood Autism Rating Scale (Schopler, Reichler, & Renner, 1988). At younger ages, IBI was positively related with CARS outcomes. At older ages, IBI was negatively related with CARS outcomes. m = months.

Roberts, J.E., **Tonnsen, B.L.,** Robinson, A., & Shinkareva, S.V. (2012). Heart activity and autistic behavior in infants and toddlers with fragile X syndrome. *American Journal of Intellectual and Developmental Disabilities, 117,* 90-102.

Heart-Defined Attention

 Visual orienting and physiological arousal intersect (e.g. Casey & Richards, 1991; Richards, 2000)

- Infants in sustained attention are less distractible during:
 - computerized tasks (Casey & Richards, 1988; Richards, 1997)
 - behavioral tasks (Lansink & Richards, 1997; Roberts et al., 2011)

Could sustained attention inform orienting deficits in ASD?

Questions & Hypotheses

BIOBEHAVIORAL ASSOCIATIONS

Greater sustained attention will be associated with greater behavioral looking

CROSS-GROUP DIFFERENCES

ASIBs will display "extreme" behavioral and heartdefined sustained attention compared to controls

CLINICAL SIGNIFICANCE

Abnormal behavioral and heart-defined attention will predict clinical autism risk at 11-14 months

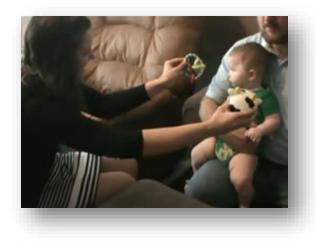
Participants

- 43 participants
 - 21 infant siblings (ASIBs)
 - 22 low risk (LR) controls
- Attention assessed between 1-3 occasions (n=77 total)
- Attention data at all assessments; clinical data at 11-14 months
- Missing data: 22.2% (*n*=11 per group)
 - 30% looking required for SA calculations (excluded 6 ASIB, 3 LR)
 - Physiological data excluded if >5% artifact

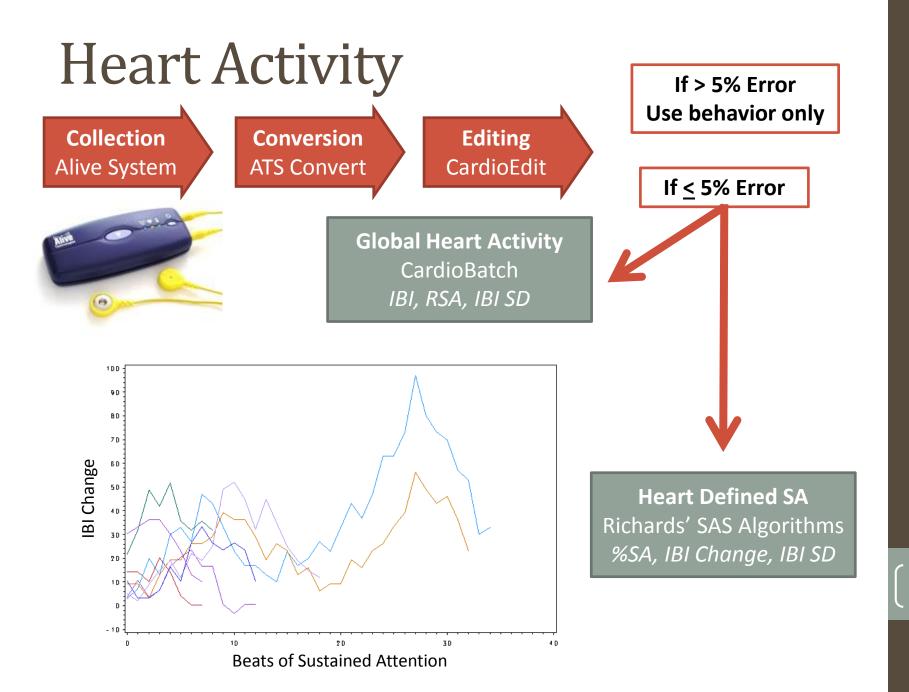
Behavioral Measures

Behavioral Looking

- Baby Einstein video (135s)
 - Inter-rater reliability = 83%
 - Coded using Noldus Observer



Clinical Autism Risk Autism Observation Scale for Infants Total Score


- Research reliability
- Inter-rater reliability = 89%

Mental Age

• Mullen Scales of Early Learning Early Learning Composite

Analyses: MLM

	Attention Related	Not Attention Related
Physiological	Sustained Attention	Global Heart Activity
Not Physiological	Behavioral Attention	

Analyses: MLM

Level 1 (Unconditional Models): Examine DVs across age

	Attention Related	Not Attention Related
Physiological	Sustained Attention	Global Heart Activity
Not Physiological	Behavioral Attention	

 Across our sample, what are DVs at the mean age of our sample, and how do these levels change over time?

Analyses: MLM

Level 1 (Unconditional Models): Examine DVs across age

	Attention Related	Not Attention Related
Physiological	Sustained Attention	Global Heart Activity
Not Physiological	Behavioral Attention	

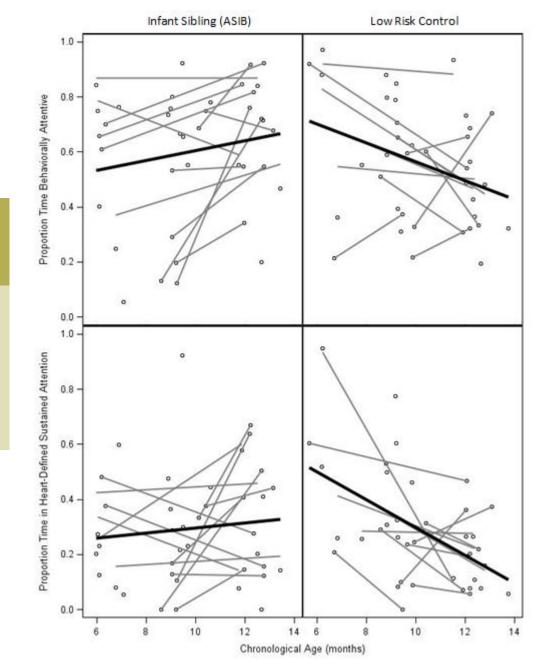
 Across our sample, what are DVs at the mean age of our sample, and how do these levels change over time?

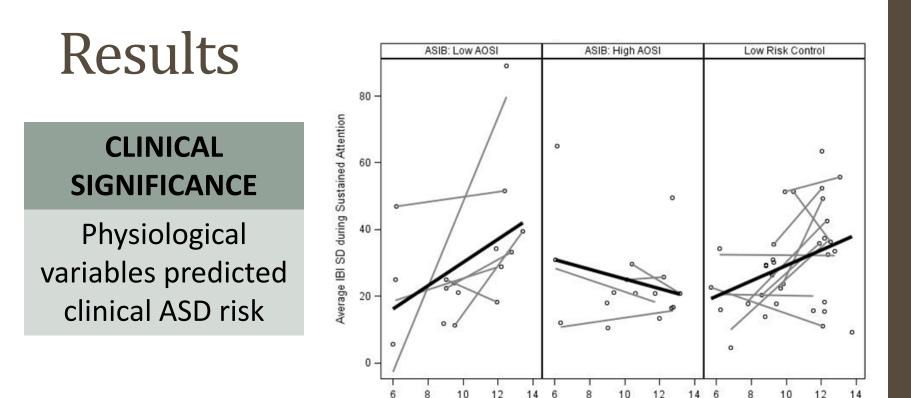
Level 2 (Conditional Models): Effects of "predictors" on trajectories

- Group
- Clinical autism risk

Results

- Proportion of time in behavioral and heart-defined attention correlated (ρ = -.69, p < .001)
- Proportion of time in behavioral attention not associated with global heart activity or features of SA


BIOBEHAVIORAL ASSOCIATIONS


Proportion of time in behavioral and sustained attention correlated

Results

CROSS-GROUP DIFFERENCES

ASIBs failed to display typical decreases of behavioral and sustained attention across age

Among ASIBs with AOSI data (n=19; 39 assessments), higher clinical autism risk associated with abnormal trajectories of:

10

Chronological Age (months)

12

14

- Global IBI (overall IBI, IBI SD)
- Sustained attention (IBI change, IBI variability)
- Behavioral variables ns

Summary

- Abnormal arousal present in infancy in ASIBs, prior to onset of autism symptomatology
- Substantial heterogeneity in profiles

	Attention Related	Not Attention Related
Physiological	Sustained Attention	Global Heart Activity
Not Physiological	Behavioral Attention	

Summary

- Abnormal arousal present in infancy in ASIBs, prior to onset of autism symptomatology
- Substantial heterogeneity in profiles

Distinguished

Groups

	Attention Related	Not Attention Related
Physiological	Sustained Attention	Global Heart Activity
Not Physiological	Behavioral Attention	

Summary

- Abnormal arousal present in infancy in ASIBs, prior to onset of autism symptomatology
- Substantial heterogeneity in profiles

Distinguished

Groups

	Attention Related	Not Attention Related
Physiological	Sustained Attention	Global Heart Activity
Not Physiological	Behavioral Attention	

Predicted ASD Risk

DISCUSSION

28

Take-Home Points

BIOBEHAVIORAL ASSOCIATIONS

Proportion of time in behavioral attention correlated with proportion of time in SA, but not SA features

CROSS-GROUP DIFFERENCES

Abnormal behavioral and heartdefined attention emerged within the first year of life in ASIBs

CLINICAL SIGNIFICANCE

Abnormal physiological profiles (not behavior) predicted clinical ASD risk

3 Key Outcomes:

- Supports abnormal orienting as
 - Endophenotype of ASD
 - Potential predictor of clinical risk
- Deficits may be emerging earlier than previously reported
 - Longitudinal methods revealed nuanced changes
 - Further work needed to establish longitudinal outcomes
- Heart activity not behavior sensitive to within-group risk
 - SA as potential biomarker
 - Increased sensitivity to growth treatment monitoring?

Limitations & Next Steps

Limitations:

- Underpowered to examine sex and nuanced age effects
- G-O task design
- Lack of outcome data

Next Steps:

- Examine outcomes (ASD, developmental, language, anxiety)
- Examine additional indicators of attention
- Design tasks to test visual processing versus arousal H_o

Long-Term Impact

- Inform early detection, prevention and intervention
- Improve diagnostic tools in NDDs
- Promote school readiness
- Support families and teachers

"For the first time, *prevention* of ASD is plausible. Prevention will entail detecting infants at risk before the full syndrome is present and implementing treatments designed to alter the course of early behavioral and brain development."

- Geraldine Dawson (2008)

Thank you!

- Our wonderful participants
- Jane Roberts
- John Richards
- NDD Lab
- Attention Team:
 - Alex Ambrose
 - Sara Deal
 - Claire Harryman
 - Jeong Lim
 - Erica Mazur
 - Bailey Tackett
- APA Division 33 Travel Award

This work was supported by NIMH-1F31MH095318-01A1 (Tonnsen) and NIMH-1R01MH090194-01A1 (Roberts). The Gap Overlap Task was provided courtesy of the Centre for Brain & Cognitive Development, Birkbeck, University of London.