INTRODUCTION
Recent estimates suggest 1 in 54 males are diagnosed with an autism spectrum disorder (ASD), indicating a critical public health concern (CDC, 2012).

Some studies of infant siblings of children with autism (ASIBs) suggests atypical responses to faces (e.g., McCleery et al., 2009) and atypical patterns of face versus object preferences (e.g., Bhat et al., 2010) compared to typically developing (TD) controls. Others have reported similar fixations toward familiar and unfamiliar faces but atypical patterns of event related potentials (ERPs) across groups (Elshabbag et al., 2009; Key & Stone, 2012). However, no published studies have compared visual processing in ASIBs to other groups at high genetic risk for autism, including infants with fragile X syndrome (FXS), the leading known heritable cause of autism.

Infant siblings of children with autism (ASIBs) comprise the most commonly studied high-risk prospective sample, as ASIBs face higher rates of autism diagnoses (10-61%; e.g., Landa & Garrett-Mayer, 2006) than the general population (1-2%).

Between 25% and 60% of infants with fragile X syndrome (FXS) later meet criteria for autism, and up to 90% display autistic symptoms. Fragile X syndrome is the most common heritable form of intellectual disability and the leading single-gene cause of autism, affecting 1,400 individuals (Crawford et al., 2002).

METHODS:
A Paired Comparison task was used to examine visual preferences toward familiar and unfamiliar faces and toys. Four stimuli were presented: the child’s mother and favorite toy, and the previous participant’s mother and favorite toy. Infants viewed paired comparison trials of simultaneously-presented faces (mother, stranger) or toys (familiar, unfamiliar). Preference scores were calculated as the proportion of time looking toward the unfamiliar stimulus. Infants also viewed brief presentations (500ms) of each stimulus for the purpose of measuring ERPs implicated in novelty (Nc). Event related potentials were recorded using a 128-channel high-density net.

RESULTS: Behavioral Preferences
Behavioral data were analyzed using repeated measure analyses of variance (Figure 1). Patterns of novelty preference differed across stimuli and groups, F(59, 733) = 6.97, p < .001. Although the FXS and TD groups showed greater novelty preference on face trials than toy trials, the ASIB group showed opposite patterns, demonstrating greater novelty preference on toy trials than face trials.

Within face trials, stranger preference marginally differed by group (p = .07), with the FXS group showing less stranger preference than the TD group. Preference toward unfamiliar toys also differed by group (p < .001), with the ASIB group showing the greatest novelty preference, followed by the TD and FXS groups. Thus, although the FXS group exhibited less novelty preference overall, they followed the typical pattern of greater preference toward novel face toys than toys. The ASIB group exhibited similar overall novelty preference to the TD group but exhibited atypically greater preferences toward novel toys versus faces.

RESULTS: Event-Related Potentials
Visual inspection of ERP grand averages suggests atypical Nc components in both high risk groups. Both FXS and ASIB groups produced larger Nc components than controls, with the greatest amplitudes in the FXS group (Figure 2).

Within toy trials, TD and ASIB participants showed greater Nc amplitude toward familiar versus unfamiliar toys, whereas the FXS group showed similar amplitudes across stimulus (Figure 4). Face trials also differed by group. Although the TD group produced a slightly greater Nc amplitude toward the stranger versus mother, the FXS group exhibited greater responses toward mothers versus strangers, and the ASIB group showed similar amplitudes across stimuli. The peak of the Nc also occurred later in response to faces in ASIBs, whereas peaks occurred later in response to objects for TD and FXS groups.

These data may suggest a developmental lag in shifting preferential attention toward strangers versus mothers in ASIBs and FXS, as well as atypical Nc latency associated with processing faces in ASIBs.

DISCUSSION
Atypical face processing is well-documented in autism and may relate to the socio-communicative deficits inherent to the disorder. Our data suggest:

- Infants with FXS show lower overall novelty preference and fail to show greater Nc amplitude to familiar vs. unfamiliar toys. However, they show typical face-specific novelty preferences and typically shorter Nc latency to faces than toys.
- Infant ASIBs show typical overall novelty preference and Nc amplitude differences across familiar and unfamiliar toys. However, they show comparatively less novelty preference for faces, as well as longer Nc latency to faces.

- Diverging novelty preference patterns across high-risk groups underscore the importance of cross-group comparisons to inform the latent heterogeneity of autism.
- Characterizing early visual preferences may contribute to early detection and prevention of efforts. For example, Nc latency to a mother's face is associated with stronger interpersonal skills in ASIBs (Key & Stone, 2012), suggesting face-specific early indicators may link to clinical outcomes.
- Future work is needed to test the generalizability of early autism indicators from ASIB samples, as well as the clinical implications of markers shared across high risk groups.

RESEARCH QUESTIONS
Do high and low-risk infants differ in responses to novel faces and toys, as measured by:
1. Behavioral looking preference toward novel stimuli
2. Stimulus-onset ERPs implicated in novelty (Nc)

PARTICIPANTS
Preliminary data include participants from an ongoing longitudinal study of the emergence of autism in high risk infants.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>n male</th>
<th>Age in months (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FXS</td>
<td>11</td>
<td>8</td>
<td>12.35 (.42)</td>
</tr>
<tr>
<td>TD</td>
<td>11</td>
<td>8</td>
<td>12.06 (.67)</td>
</tr>
<tr>
<td>Controls</td>
<td>8</td>
<td>6</td>
<td>12.55 (.29)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>30</td>
<td>24</td>
<td>12.67 (.70)</td>
</tr>
</tbody>
</table>

REFERENCES

Funded by NICHD-R17 18542 (Richards), NHM-R01 00194 (Roberts), and NHM-F1 035318 (Tonsen).