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Abstract

Principal component analysis (PCA) and independent component analysis (ICA) were examined in their ability to recover

dipole sources from simulated data. Datasets of EEG segments were generated that contained cortical sources that were

temporally overlapping or non-overlapping, and dipole sources with varying degree of spatial orthogonality. For temporal

overlapping sources, both PCA and ICA resulted in components that required multiple-source equivalent current dipole models.

The spatially overlapping sources affected the PCA method more than ICA, resulting in single PCA components in which all

non-orthogonal sources were represented. For both PCA and ICA, dipole models with fixed-location dipoles successfully

accounted for most of the variance in the component weights, even when the spatial or temporal overlap of the generating

sources required multiple-dipole models.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A common view of event-related-potential (ERP)

components is that they are defined by scalp top-

ography, temporal morphology, and relation to exper-

imental variables (Donchin et al., 1978; Fabiani et al.,

2000; Spencer et al., 1999). I suggest that this view of
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ERP components represents bcognitive psycho-

physiologyQ, where the scalp topography or the

temporal activity is sufficient to achieving the

psychological goals of psychophysiology. bCognitive
neuroscienceQ would place two additional qualifica-

tions for ERP components. First, ERP components

should be defined by specific systems in the brain

where they are generated, and second, other neuro-

imaging tools (e.g., fMRI, PET) give complementary

information regarding these components. The present
ysiology 54 (2004) 201–220
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study shows that component analysis methods, such

as principal component analysis (PCA) and independ-

ent component analysis (ICA), may recover cortical

and intracerebral sources of scalp-recorded ERP and

that this technique aids in the goal of defining brain

locations for ERP components.

The analysis of ERP components has been aided by

PCA in two ways. First, temporal PCA has been useful

in determining the time course of ERP activity.

Temporal PCA uses as variables the ms intervals for

which the EEG (ERP) has been sampled and uses as

observations the EEG channels. The eigenvectors from

this analysis are then plotted to represent uncorrelated

sources of temporal activity in the ERP signal (Chap-

man and McCrary, 1995; Dien, 1998; Spencer et al.,

1999). The sequence of eigenvector weights from this

analysis may be used to infer peaks in the ERP, such

as the P3 (at ~300 ms post-stimulus), N4, and so forth.

Second, bspatialQ PCA has been proposed as a method

to recover the topographical aspects of ERP compo-

nents (Dien, 1998; Richards, 2003; Spencer et al.,

1999). Spatial PCA uses as variables the EEG

channels and uses as observations the ms intervals

for which the EEG (ERP) has been sampled. A recent

application of PCA has combined spatial and temporal

PCA to analyze the components found in the P3a and

P3b for recognition memory (Spencer et al., 1999).

Thus, the temporal and topographical aspects of ERP

components may be studied with PCA.

Can PCA be used as an aid to the cognitive

neuroscience goal of the identification of the brain

areas in which the ERP components are generated?

One way in which this might proceed is to identify a

set of weights that represent the topographical

information from the ERP (i.e., Spencer et al.,

1999). These weights can then be used with dipole

source analysis (e.g., Scherg, 1990, 1992; Scherg and

Picton, 1991; Huizenga and Molenaar, 1994). Dipole

source analysis hypothesizes a (a set of) dipole (s)

located in the cortex representing a current source

generated by a large number of neurons located in a

discretely bounded area. The bforward solutionQ may

be calculated that represents the electrical current that

would occur on the scalp from a dipole with specified

location and magnitude vectors. The forward solution

current is compared with the component weights, and

the dipole location/magnitude adjusted to achieve a

best fit between the hypothesized current and the
component weights. Dien (Dien, 1999; Dien et al.,

1997) has studied psychosocial and cognitive pro-

cesses with this method, and Richards (2003) has

studied cortical sources of ERP in the prosaccade–

antisaccade task with this method.

There are several characteristics of PCA that

suggest it is suitable for examining cortical sources.

The PCA technique is a linear decomposition of data

that results in a set of weights, eigenvectors, that form

the basis for a new coordinate system. The eigenvec-

tor weights describing one dimension are orthogonal

to the dimensions described by other eigenvectors. If

multichannel EEG recordings are processed by PCA

using the channels as variables and the time points as

observations, the resulting eigenvector matrix is a set

of topographic scalp maps (Jung et al., 2000a). The

component analysis of ERP scalp activity assumes

that there are discrete sources of neural activity that

sum linearly to form the observed electrical activity

recorded with electrodes on the scalp (Makeig et al.,

1996, 1997). The decomposition of the variance in the

ERP signal with PCA assumes that this activity can be

distinguished via its co-occurrence in the spatial

coordinate system found with PCA. Thus, the

eigenvector weights themselves could be used in

equivalent current source analysis to model the

dipoles that generated scalp-recorded EEG activity.

It has been shown that the dipoles underlying the

generation of scalp electrical activity may in some

circumstances be recovered with PCA analysis (Maier

et al., 1987; Achim et al., 1988; also cf. Mosher et al.,

1992). One goal of this study was to use simulated

data with known cortical sources to determine how

well the PCA algorithm recover the cortical sources.

An alternative linear decomposition method could

be used in this manner. The bindependent component

analysisQ (ICA) (Makeig et al., 1996, 1997) provides a

linear decomposition of data and has been applied to

EEG and ERP. The ICA approach has been described

in several places (Makeig et al., 1996, 1997; Jung et

al., 2000a,b). As with PCA, the ICA attempts to

discover a set of component weights that represent

filters that linearly decompose a set of data. The ICA

uses an binfomaxQ algorithm that attempts to minimize

the common information among the temporal projec-

tions derived from single component weights and their

accompanying activations, and maximize the informa-

tion in each component. The output of the projected
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activation for one component is statistically independ-

ent from the output of other components (Jung et al.,

2000a), though the weights of one component are not

necessarily orthogonal to other component weights.

The ICA approach may be applied to the source

analysis problem. If ICA is applied to multichannel

EEG recording, the component weights produced by

the ICA approach are a set of topographical scalp

maps similar to the PCA eigenvectors (Jung et al.,

2001a,b). Thus, the ICA component weights could be

used in equivalent current source analysis to model

the dipoles that generated scalp-recorded EEG activ-

ity. A recent use of ICA has applied it to single trial

EEG data, extracted components, and estimated

equivalent current dipoles from the resulting compo-

nent weights (DeLorme et al., 2002; Jung et al.,

2000b, 2001a). Either approach (ICA, PCA) can be

used with bspatial component analysisQ to describe the

scalp topography of an ERP component, and temporal

activations of the component(s) describe the temporal

morphology of the ERP component.

Several authors using and describing the ICA

approach have been critical of the use of PCA for

uncovering cortical sources in EEG and ERP data

(Jung et al., 2000a; Makeig et al., 1997, 1999). For

example, one criticism is that if the sources of neural

activity are temporally sparse and the resulting EEG

data decidedly non-normal, the PCA decomposition

might result in single components with linear combi-

nations of the underlying sources rather than separat-

ing sources into distinct components. Another

criticism of the PCA technique is that neurophysio-

logical models do not necessarily imply orthogonality

of cortical sources, and the possibility of non-

orthognal component weights is preferable for ERP

data. Therefore, ICA might have an advantage in

discriminating between brain sources whose spatial

projection to the recording EEG electrodes are non-

orthogonal (Makeig et al., 1999). The ICA technique

has some assumptions that may not be met in ERP

components. The ICA technique assumes that the

temporal activity making up the underlying sources are

independent (Jung et al., 2000b). Therefore, dipole

sources with a consistent temporal overlap could not

be successfully distinguished by the ICA component

weights. Whether the ICA or the PCA approach is

preferable for a cortical source analysis does not seem

resolvable by theoretical arguments. Some studies
have compared the two methods with empirical data

(e.g., Makeig et al., 1997, 1999) and prefer the ICA

results. One goal of the current study was to compare

the results from ICA analysis and PCA analysis for

uncovering dipole sources in simulated data with

known cortical or cerebral sources.

There were three main procedures used in the study.

First, I simulated ERP data using cerebral sources in

five different datasets. The sources came from brain

areas that were reasonable examples of ERP component

sources. The datasets differed in the amount of spatial

overlap in the sources (orthogonality of dipole sources)

and amount of temporal overlap in the activity of the

sources (temporal independence of cortical source

activity). These variables could conceivably affect

howwell the PCAand ICA techniquesworked. Second,

spatial component analysis (PCA and ICA)was applied

to the simulated ERP data to recover the topographical

and temporal aspects of the ERP components

(DeLorme et al., 2002; Jung et al., 2001b; Richards,

2003, 2004). The component weights were used with

topographical maps to see if the weights were similar to

the topographical distributions in the source ERP

(following, e.g., Makeig et al., 1996, 1997 for ICA,

and Spencer et al., 1999 for PCA). The time course of

the ERP components was analyzed with the bprincipal
component scoresQ for PCA, and the bactivationsQ for
ICA. This consists of a score for the component along

each point in the temporal sequence of the ERP

segments, the btemporal activationQ of the component

(following, Makeig et al., 1996, 1997). Third, cortical

source analysis (equivalent current dipole analysis; e.g.,

Scherg, 1990, 1992; Scherg and Picton, 1991; Hui-

zenga and Molenaar, 1994) was used to recover the

sources that generated the data. The overall approach I

followed was similar to that done by DeLorme et al.

(2002) and Jung et al. (2001b) with ICA, who used

spatial component analysis followed by equivalent

current dipole analysis of the component weights.
2. Method

2.1. Cortical sources, EEG segments and the forward

solution

Seventeen locations in the cortex and one location

in the hippocampus were chosen as dipole sources.
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Table 1 has the anatomical names of the locations.

The sources were chosen based on source analysis

studies, neuroimaging work, neurophysiological data,

and ERP work. Each source was located via the

standardized bTalairachQ maps (Talairach and Tour-

noux, 1988; see Table 1). A structural MR recording

was made for one individual and scalp/skull land-

marks were identified and measured. The source was

then identified according to the mm coordinates of

that individual (Table 1).

The EMSE computer program was used to

generate EEG segments using the forward solution.

Each segment consisted of 400 ms of data sampled at

500 Hz, i.e., 200 samples. The EEG segments were

generated for a 128-channel EGI sensor system

(Electrical Geodesics, Eugene, OR; Tucker, 1993;

Tucker et al., 1994) using the electrode placement file

for the individual. The temporal course of the source

activity was the same for each ERP segment, and

consisted of a inverse exponential increase and

decrease over about 200 ms of the interval. The

dipole magnitude was set to 1.0e�07 in each case. In

addition, EEG noise was generated at 10% amplitude

of the dipole (1.0e�08 amplitude; pseudo-random

Gaussian signal added to each channel). In addition to

the specific sources required by the simulations goals

(next section), all EEG segments contained at least
Table 1

Cortical sources for the experiments

No. Anatomical location Tal

Co

1 Anterior cingulate 2

2 Extrastriate visual �9

3 Middle temporal �2

4 Superior temporal sulcus (parallel dipole)

5 Fusiform gyrus �7

6 Striate visual (parallel dipole) �8

7 Frontal eye fields �
8 Dorsolateral prefrontal 2

9 Hippocampus �4

10 Inferior temporal �1

11 Frontal pole 6

12 Sensorimotor eye fields 1

13 Medial cingulate �1

14 Superior posterior cingulate (parallel dipole) �4

15 Prefrontal 4

16 Primary auditory �2

17 Wernicke’s area �6

18 Broca’s area 1
one dipole from the sources in Table 1 at 0.25e�07

amplitude and whose temporal onset varied randomly

in each segment. The datasets were generated by

choosing one of these random sources, one of the

sources relevant to the simulations goal, and generat-

ing 160 trials (32,000 samples).

2.2. Five simulated datasets

Five datasets were simulated. Each dataset had four

conditions. One condition always was a control trial

that had only a randomly chosen dipole source. For

two of the datasets, I chose sources from Table 1 that

had little spatial overlap. Fig. 1 shows the topo-

graphical potential maps for the anterior cingulate,

middle temporal, and extrastriate visual sources.

These sources might reasonably occur in a cued fixed

foreperiod reaction time task. This task is known to

generate a contingent negative variation in EEG, the

CNV (Fabiani et al., 2000; Walter et al., 1964) which

could be modeled as having a cortical source located

in the anterior cingulate cortex. The spatial cueing

should result in an enhancement of the ERP occurring

over occipital scalp leads, the P1 validity effect, which

is caused by activity in extrastriate visual cortex

(Hillyard et al., 1995; Martinez et al., 1999; Richards,

2003, 2004). Spatial overlap between two sources was
airach coordinates Brodmann area

ronal Saggital Axial

5 13 20 32

5 29 20 18

5 51 �15 21

9 39 10 22

0 33 �10 37

0 19 0 17

7 20 51 6

5 47 26 46

6 �18 �12 Hippocampus

7 55 �27 21

4 1 17 10

1 40 46 8

5 11 42 31

1 11 36 31

4 33 0 10

9 41 �22 20

6 58 �11 38

5 29 74 47



Fig. 1. Topographical potential maps for the low spatial overlap and the high spatial overlap cortical sources.
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measured by computing the correlation between the

128 electrodes at the peak of the EEG. The correlation

for these sources was relatively small (anterior

cingulate and extrastriate visual, r=0.309; anterior

cingulate and middle temporal, r=�0.168; extrastriate

visual and middle temporal, r=0.021). The Single

Sources, No Overlap dataset was generated with only

one of these sources on each trial. Fig. 2 shows the

spatiotemporal topographical potential map for the

middle temporal trial. Because a trial was generated

by a single source, there was no spatial and no

temporal overlap from the sources in the EEG

segments. The Additive Sources, Temporal Overlap

dataset was generated so that sources were succes-

sively added to each trial. That is, one trial had only

the anterior cingulate source, one trial had the anterior

cingulate and extrastriate visual source, and one trial

had all three sources. Fig. 2 shows a spatiotemporal

topographical potential map for the trial with the three

sources. The onset of the anterior cingulate source

varied randomly, whereas the extrastriate visual and

middle temporal sources had their peak occur at the

same interval (about 200 ms).
Two of the datasets had sources with significant

spatial overlap. Fig. 1 shows the topographical

potential maps for the dorsolateral prefrontal, hippo-

campus, and inferior temporal sources. These sources

might reasonably occur in an experiment evaluating

working memory and long-term memory. The hippo-

campus and the inferior temporal cortex are known to

be involved in long-term storage (Monk et al., 2000;

Nelson, 1995). The dorsolateral prefrontal cortex is

involved in working memory (Levy and Goldman-

Rakic, 1999). The correlation of the peak EEG

between the 128 electrodes was large (dorsolateral

prefrontal and hippocampus, r=0.724; dorsolateral

prefrontal and inferior temporal, r=�0.803; hippo-

campus and inferior temporal, r=�0.764). The Single

Sources, Spatial Overlap dataset was generated with

only one of these sources on each trial. The Additive

Sources, Temporal and Spatial Overlap dataset was

generated with the sources successively added to each

trial. One trial had only the dorsolateral prefrontal

source, one trial had the dorsolateral prefrontal and

hippocampus sources, and one trial had all three

sources. Fig. 2 shows a spatiotemporal topographical



Fig. 2. Spatiotemporal topographical potential maps for three of the simulated datasets. The maps represent the EEG segment of a single 400 ms trial in 40 ms averages for the three

displayed datasets.

J.E
.
R
ich

a
rd
s
/
In
tern

a
tio

n
a
l
Jo
u
rn
a
l
o
f
P
sych

o
p
h
ysio

lo
g
y
5
4
(2
0
0
4
)
2
0
1
–
2
2
0

2
0
6



Fig. 3. The matrix of observations for the PCA and ICA analysis

for a bspatial PCAQ (spatial ICA) component analysis, and the

matrix of component loading weights.
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potential map for the trial with the three sources. The

dorsolateral prefrontal source had its temporal onset

varied randomly, whereas the extrastriate visual and

middle temporal sources always had their peak occur

at the same interval.

The Multiple Sources dataset was generated with

nine cortical sources underlying the EEG segments.

One trial had the three sources from the low spatial

overlap sources (Fig. 1), one trial had the sources from

the high spatial overlap sources (Fig. 1), and one trial

had three sources with mixed spatial overlap (fusiform

gyrus and superior temporal sulcus, r=�0.108; fusi-

form gyrus and striate visual, r=�0.219; superior

temporal sulcus and striate visual, r=�0.816). These

latter three sources might reasonably be involved in a

study of face processing (de Haan and Nelson, 1999).

Each source in a trial had its starting point randomly

chosen in the first 300 ms of the 400 ms sample

interval, so that the sources were temporally over-

lapping in most of the trials.

2.3. Principal component analysis

The PCA was done following the procedures used

by Richards (2003). The analysis was done on the

braw EEGQ data, i.e., no ERP averages were studied.

One advantage of this approach is that the activations

may be viewed on single trials for single participants,

and related to participant characteristics (i.e., age,

gender) or single trial results (i.e., reaction time, error

rate, memory performance). The PCA was done as a

bspatial PCAQ (Spencer et al., 1999). Fig. 3 shows

how the EEG was arranged in a matrix. The variables

for the analysis were the 128 electrode sites (columns

of EEG Data Matrix in Fig. 3), and the observations

were the time-sampled EEG data for the 128 channels

(rows of EEG Data Matrix in Fig. 3). The data from

the 160 trials were concatenated (Segment 1, Segment

2, . . . Segment 160 in rows of EEG Data Matrix in

Fig. 3). This resulted in 4 trial types�40 trials per

type�200 samples per trial=32,000 observations. For

an ERP study, this might represent the data from a

single individual (see DeLorme et al., 2002; Jung et

al., 2001b for a similar approach with ICA). The PCA

resulted in a set of 128 component loadings, with each

component having a loading for the 128 electrode

channels (Component Loading Matrix in Fig. 3).

Because the PCA was done on the covariance matrix,
,

the eigenvector weights represent the coefficients for

computing the principal component scores from the

raw data.

The resulting component weights (eigenvector

values) were used to display in topographical plots

the spatial organization of the components (Richards,

2003, 2004; Spencer et al., 1999). For example, the

128 weights corresponding to the electrode channels

in the first column of the Component Loading Matrix

in Fig. 3 would represent the weights being plotted in

a topographical map for the first principal component.

These plots represent topographically coordinated

activity that is temporally concomitant in the ERP

data but is independent of the temporal information

and independent of the experimental factors. The
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topographical maps consisted of a spherical spline

interpolation (Perrin et al., 1989) shown in a radial

projection (Perrin et al., 1987). For the topographical

maps, the principal component weights were multi-

plied by the standard deviation of the original

variables, and thus were displayed in AV units. This

transformation was done so that the topographical

maps from the PCA would be in the same units as

those from the ICA, which intrinsically are in AV
units.

The temporal information is lost in the compo-

nent weights. Thus, the temporal morphology of the

components was analyzed by examining the

bcomponent scoresQ for each component along each

point in the temporal sequence of the ERP seg-

ments, the btemporal activationQ of the component

(Makeig et al., 1996, 1997). The activations were

found by multiplying the 128 raw EEG data points

at 2 ms samples in matrix multiplication with the

128 weights for a component, thus resulting in a

single component activation score for each 2 ms

sample. The matrix of activations is equivalent to

the EEG Data Matrix multiplied by the Component

Loading Matrix shown in Fig. 3. These activations

may be shown trial-by-trial, averaged over several

trials, or analyzed via factorial designs experimental

factors.

2.4. Independent component analysis (ICA)

An independent component analysis (ICA) was

done following the procedures outlined by Makeig,

Sejnowski, and their associates (DeLorme et al.,

2002; Jung et al., 2001b; Makeig et al., 1996, 1997;

also see Reynolds and Richards, 2004; Richards,

2004). The ICA was done on the same data used for

the PCA, i.e., raw EEG stacked from the 160 trials,

32,000 samples (EEG Data Matrix in Fig. 3). The

variables for the analysis were the 128 electrode

sites, leading to the estimation of 128 components

(DeLorme et al., 2002; Jung et al., 2001b). Each

ICA component had loadings analogous to the PCA

technique, with each component having a loading for

the 128 electrode channels (Component Loading

Matrix in Fig. 3). The weights were calculated using

the extended-ICA algorithm of Lee et al. (1999),

with an initial learning rate of 0.003. The activations

were calculated. Topographical maps and temporal
activations were obtained in parallel to the PCA

procedures.

The inverse of the resulting component weights

was calculated. This matrix represents the scoring

matrix against which the activations would be multi-

plied to restore the raw data, i.e., the matrix of ICA

component activations would be equal to the EEG

Data Matrix multiplied by the inverse of the Compo-

nent Loading Matrix for the ICA analysis. This matrix

is analogous to the eigenvector matrix computed in

PCA. The ICA weights from this matrix were used

display in topographical plots the spatial organization

of the components (Makeig et al., 1996, 1997). These

weights were in AV units so that the topographical

maps from the PCA and ICA were in comparable

units.

2.5. Cortical source analysis

The cortical source analysis used equivalent

current dipole analysis. Component weights (PCA or

ICA) were analyzed with equivalent current dipole

analysis to determine the fit between the weights

describing the component and scalp current generated

by hypothetical dipoles (DeLorme et al., 2002; Jung et

al., 2001b). Dipole source analysis hypothesizes a (a

set of) dipole (s) that generates an electrical current on

the scalp. This forward solution may be compared

with the component weights, and the dipole location

and magnitude is modified to minimize the difference

between the generated current map and the component

weights. I used single- and multiple-dipole sources. I

accepted a single-dipole source model if the model

explained at least 95% of the variance. Otherwise, a

second dipole was added to the analysis. There were

some models that required three-dipole sources to

explain greater than 95% of the variance in the

component weights. For the single-dipole models, I

first estimated model fit for a dipole with fixed

locations but whose moments were estimated, and

then a model with estimated locations and moments.

Multiple-dipole models had only fixed locations and

free moments.

2.6. Computer programs

The MRViewer (Signal Source Imaging) was used

to identify the Talairach locations and the mm
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locations for the individual and to view the MRIs. The

EMSE computer program from the same company

was used to simulate the ERP segments, display the

topographical maps, and do the source analysis

(BESA is an alternative program for such analyses).

I used SAS programs to combine the forward solution

ERP segments according to the five simulated data-

sets. The programs generated 1 trial for each condition

and were run 40 times to acquire 40 trials per

condition. The SAS Proc Principal was used for the

PCA. The SAS programs are available from the

author. The extended-ICA algorithm was originally

programmed in Matlab by Scott Makeig and others,

and I used the publicly available program done in C++

from the Matlab versions by Sigurd Enghoff (March,

2000; see http://www.cnl.salk.edu/~enghoff/).
3. Results

3.1. Components analysis and source analysis

3.1.1. Single Sources, No Overlap

This dataset was generated with only a single

source on each trial, so there was no temporal or

spatial overlap from the sources in the EEG segments.

Fig. 2 shows a spatiotemporal topographical potential

map for a middle temporal trial. The eigenvector

weights from the PCA are shown in a topographical

display in Fig. 4 for the first 10 components of each

analysis. The equivalent current dipole modeling was

applied to the first three components of the PCA. A

single-dipole model for the first component accounted

for 92% of the variance when the location was fixed at

the middle temporal source location, and 97% of the

variance with location estimated. This model placed

the dipole at [�15, 44, �14], which was about 7 mm

away from the middle temporal source. A single-

dipole model with a fixed location at the extrastriate

visual source for the second PCA accounted for 97%

of the variance, and estimating the dipole location

resulted in a dipole less than 2 mm from the

extrastriate source. A single-dipole model at the

anterior cingulate explained only 83% of the variance

in the third PCA, whereas a model with a sources at

this location and at the extrastriate visual location

accounted for 97% of the component weights var-

iance. These results imply that the first three PCA
components contain the three sources for this simu-

lated dataset.

The equivalent current dipole model was applied to

the ICA components shown in Fig. 4. It appears in this

figure that the sources were reflected in several ICA

components. Models with a fixed dipole in the middle

temporal source accounted for 95%, 98%, 96%, 92%,

and 96% of the ICA components numbered 2, 3, 5, 6,

and 9, respectively. Estimating the location of the

dipole resulted in dipole locations close to the middle

temporal source, e.g., [�22, 49, �12] for component

2, which was 3 mm away from the middle temporal

source. Single-dipole models that were fixed at the

extrastriate source or estimated locations for ICA

components 1, 7, 8, and 9 resulted in models that

accounted for 94–98% of the variance in the

component weights. The fourth ICA component was

modeled well by a fixed dipole at the anterior

cingulate location (98%), and an estimated location

for this component was [23, 15, 17], about 3 mm

away from the anterior cingulate source. These results

affirm the impression that several ICA components

consisted of the sources used to generate the EEG

segments.

The patterns of activation of the components were

examined. Fig. 5 shows the activation patterns for the

first three PCA components on the trials in which the

extrastriate visual source or the middle temporal

source was active. The top left panel shows that the

activation of the second PCA occurred in the same

time interval that the extrastriate source was active in

generating the EEG segment. The top right panel

shows similar activation for the first PCA and the

middle temporal source. These activation patterns

confirm the visual impression from the topographical

maps and the equivalent current source analysis that

the first PCA reflected the middle temporal source and

the second PCA reflected the extrastriate visual

source.

The activation patterns for the ICA analysis were

more complex than those of the PCA analysis. Fig. 5

shows the activation patterns for several ICA compo-

nents in which the extrastriate visual source or the

middle temporal source was active. Considering the

first two ICA components (middle panels), there was

a consistency between the activation patterns of the

ICA components, the visual impression from the

topographical maps, and the equivalent current source

 http:\\www.cnl.salk.edu\~enghoff\ 


Fig. 4. Topographical maps of the eigenvector weights for the PCA analysis and the ICA component weights (inverse of weight*sphere matrix)

for the Single Sources, No Overlap dataset. The percentages for the PCA components are the percent variance accounted for by this principal

component, and the percentages for the ICA components are the relative variance from the projected data for this component. The ICA analysis

results in AV units for this matrix, and the PCA eigenvector weights were multiplied by the standard deviation of each variable for display in AV
units. The labels on the maps represent the equivalent current dipole sources for that component (EV: extrastriate visual; MT: middle temporal;

AC: anterior cingulate).
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analyses. However, the bottom panels show the

activation patterns for the other ICA components that

reflected the extrastriate visual or middle temporal

course. The ICA components 1, 7, 8, and 9 showed
significant activity on the extrastriate visual source

trials (Fig. 5, lower left panel). This is consistent with

the topographical maps (Fig. 4) and the equivalent

current dipole analysis. One should note the different



Fig. 5. Temporal activations (component scores over time) from PCA and ICA analyses for the Single Sources, No Overlap dataset, separately

for the extrastriate visual source trials and the middle temporal source trials.
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temporal course of activation for these components.

The activations for the extrastriate visual source trials

showed a temporal activation on each of the trials that

was consistent with the mean activation time course.

Since the temporal activity of the source generating

the EEG segment was the same in each case, this

suggests that the different components focused in on a

different time segment of the source activity. This

pattern was true for the multiple ICA components

representing the middle temporal source (ICA com-

ponents 2, 3, 5, 6, 10; Fig. 4 and bottom right panel of

Fig. 5).

3.1.2. Single Sources, Temporal Overlap

This dataset was generated with sources that were

successively added to the four trials and whose

temporal activations overlapped in the EEG segment.

These sources had little spatial overlap (Fig. 1). Fig. 2

shows a spatiotemporal topographical potential map

for the trial that had the anterior cingulate, extrastriate

visual, and middle temporal sources. The eigenvector

weights for the first five PCA components are shown

in a topographical display in Fig. 6. Only the first two

PCA components were modeled well with the sources

that were used to generate the dataset. The equivalent

current dipole modeling resulted in two-dipole mod-

els. Single-dipole models with either fixed dipole

locations or estimated dipole locations explained from

70% to 85% of the variance for the first component,

and 67% to 87% of the variance in the second

component. A two-dipole model with dipoles at the

extrastriate visual and the middle temporal sources

accounted for 95% of the variance for the first PCA

component. A model with dipoles at the middle

temporal and anterior cingulate sources accounted for

96% of the variance for the second PCA component.

No other components were suitably modeled with

single- or two-dipole models. The temporal activa-

tions for the first two components are shown in Fig. 6.

The activation for the first PCAwas largest on the trial

when the extrastriate visual source and the middle

temporal sources were active (right-hand figure). The

second component showed a significant activation

only when both the middle temporal and anterior

cingulate sources were active (cf. right and left

panels).

The equivalent current dipole model was applied

to the ICA components shown in Fig. 6. Two-dipole
models were necessary for the first four ICA

components shown in Fig. 6. For the first two

ICA components, the models required dipoles

located at the extrastriate visual and middle tempo-

ral sources (98% and 96% variance accounted for).

For the third and fourth ICA components, the

models required dipoles located at the anterior

cingulate and extrasriate visual sources (96% and

96% variance accounted for). The fifth ICA

component was successfully modeled with a sin-

gle-dipole source located at the anterior cingulate. A

model with a fixed dipole source at the anterior

cingulate accounted for 96% of the variance in the

weights. Estimating the dipole locations resulted in

a location at [25, 11, 13], which was 5 mm from

the anterior cingulate source. The activation patterns

for the first two components are shown in Fig. 6.

Both components show a higher level of activation

when both the extrastriate visual and the middle

temporal sources were active (lower right panel). As

with the single-source models (Fig. 5), the peak

activation was slightly different for these multiple

source components (Fig. 6, bottom right panel). I

also examined several other ICA components not

shown in Fig. 6. The three sources for this

simulated dataset occurred in the same patterns as

found in these first five components, i.e., one-dipole

model for the anterior cingulate, two-dipole models

for the middle temporal and extrastriate visual, and

two-dipole models for the extrastriate visual and

anterior cingulate.

3.1.3. Single and Additive Sources, Spatial Overlap

and Temporal/Spatial Overlap

These datasets were generated with sources that

had spatial overlap (Fig. 1), i.e., relatively large

correlations between peak EEG amplitude at the

electrodes. The Single Source, Spatial Overlap dataset

had sources placed in separate trials, whereas the

Additive Sources, Temporal and Spatial Overlap

dataset had sources that were successively added to

the four trials and whose temporal activations over-

lapped in the EEG segment. Fig. 2 shows a

spatiotemporal topographical potential map for the

trial that had the dorsolateral prefrontal, hippocampus,

and inferior temporal sources. The eigenvector

weights for the Single Source, Spatial Overlap dataset

are shown in Fig. 7 only for the first PCA. The



Fig. 6. First five ICA and PCA components for the Additive Sources, Temporal Overlap dataset. The color scale, percentages, units, and source

labels for the components are the same as in Fig. 4.
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equivalent current dipole modeling of the PCA

components was done well only in the first compo-

nent. The best fits for models with a single dipole at
the dorsolateral prefrontal, hippocampus, or inferior

temporal source, accounted for only 86% of the

variance in the component weights. All three possible



Fig. 7. First PCA components and first three ICA components for the Single Sources, Spatial Overlap dataset. The color scale, percentages, and

units for the components are the same as in Fig. 3. The labels on the maps represent the equivalent current dipole sources for that component

(DLPFC: dorsolateral prefrontal; IT: inferior temporal; HP: hippocampus).
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two-dipole models worked well, accounting for 96%

(dorsolateral prefrontal and hippocampus), 97% (dor-

solateral prefrontal and inferior temporal), and 97%

(hippocampus and inferior temporal) of the variance.
A three-dipole model accounted for greater than 99%

of the variance. Thus, although the two-dipole models

worked well, there was a 2–3% increase with a three-

dipole model.
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The ICA resulted in components that had success-

ful single-dipole models. Fig. 7 shows the topo-

graphical maps for the first three ICA components. A

fixed location model with a single dipole at the

dorsolateral frontal source location accounted for 98%
Fig. 8. The topographical potential maps and ICA components for the Mul

components of the ICA analysis, and components 12 (anterior cingulate

represent the best-fitting single dipole model for that component.
of the variance. Estimating the location increased the

accounted for variance to 99% and resulted in a

location close to the dorsolateral prefrontal source,

[20, 48, 20]. A single-dipole model with an inferior

temporal location was a successful model for the
tiple Sources dataset. The ICA components represent the first seven

) and 17 (inferior temporal). The labels on the ICA components
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second ICA component (97% and 98%) and a single-

dipole model with a dipole at the hippocampus was a

successful model for the third ICA component (98%

and 99%). Fig. 7 shows the activation patterns for the

first three ICA on the trials containing the single

sources. The activations on these trials were consistent

with the visual impression from the topographical

sources and the equivalent current dipole analysis.

The Additive Sources, Temporal and Spatial

Overlap dataset was evaluated. The results for the

PCA components were nearly identical to the prior

analysis; the first PCA component modeled by a

three-dipole model. The analysis of the ICA compo-

nents required single- and dual-dipole models. A

single-dipole model with the dorsolateral prefrontal

source resulted in models for ICA components 2, 3,

4, and 6 that accounted for between 94% and 99% of

the variance in the component weights, and esti-

mated locations were close to the dorsolateral

prefrontal source. A two-dipole model with fixed

locations was necessary for the first ICA component,

consisting of a dorsolateral prefrontal and hippo-

campus source (98% variance). A two-dipole model

was necessary for the tenth ICA component consist-

ing of the dorsolateral prefrontal and inferior

temporal sources (96% variance).

3.1.4. Multiple Sources

This dataset was generated with nine cerebral

sources. One trial type had three sources with low

spatial overlap, a second trial type had three sources

with high spatial overlap, and one trial type had

sources with mixed spatial overlap. The sources were

temporally overlapping on most of the trials. The

topographical maps of the sources are shown in the

top part of Fig. 8. The equivalent current dipole

analysis of the PCA components required two- or

three-dipole models for successful models. For

example, the first component was modeled with

sources in the middle temporal and superior temporal

sulcus (96%), the second component with anterior

cingulate and extrastriate visual sources (97%), and

the third component required a three-dipole model

with anterior cingulate, striate visual, and inferior

temporal sources (97%). All nine sources were

required somewhere for the modeling of the first six

PCA components. There did not seem to be an

influence of temporal or spatial overlap that influ-
enced which sources were needed on which compo-

nents. For example, the hippocampus and dorsolateral

prefrontal sources had temporal and spatial overlap

and were needed on one component, but the superior

temporal sulcus and middle temporal sources had no

temporal overlap (occurred on different trials) and no

spatial overlap (r=�0.089) but were necessary for the

model of the first PCA component.

The topographical maps of the ICA components

are shown in the lower half of Fig. 8, with labels on

the ICA components reflecting the equivalent current

dipole models for that component. The first seven

ICA components were fit well with one-dipole models

at a fixed location (95–97% variance accounted for) or

at an estimated location (96–99%, and from 1 to 7 mm

away from source). The anterior cingulate source

successfully modeled the 12th ICA component (96%)

and the inferior temporal source was the best fit on the

17th ICA component (94%). No two-dipole models

were required for the fits of the ICA components in

the Multiple Sources dataset.
4. Discussion

The goals of the study were to determine if the

PCA or ICA analyses could recover dipole sources

placed into simulated data and compare the two

methods. The use of PCA outlined by Richards

(2003), or ICA as outlined by Makeig, Sejnowski,

and their associates (Jung et al., 2001a,b; Makeig et

al., 1996, 1997; also see Richards, 2004), with

analysis of the component with equivalent current

dipole analysis, can recover sources placed into

simulated data. This was true in the study under a

variety of conditions that used cortical sources that

resulted in ERP components that might be found in a

typical cognitive psychophysiology or cognitive

neuroscience experiment. This was true for cortical

sources that had varying degrees of overlapping

temporal sources and whose sources had non-orthog-

onal projections for the scalp surface. Both PCA and

ICA recovered the generating sources in every dataset.

There was no difference in the accuracy of local-

ization for the recovered dipole sources between PCA

and ICA, or in the amount of variance satisfactorily

explained by dipole modeling with the generating

sources. The analysis of the component loadings
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recovered the dipole sources that were placed into the

simulated data.

There were some differences in this study

between ICA and PCA. In several cases, a PCA

component required two sources in an equivalent

current dipole model for sources that were explained

with a single-source model for ICA. This was

particularly noteworthy when the sources were

spatially overlapping, i.e., showed non-orthogonal

projections to the scalp electrodes. In this case a high

degree of overlap produced a single PCA component

that required three-dipole sources to successfully

model the data. The ICA procedure resulted in

single-dipole model for components with a high

degree of spatial overlap (Figs. 7 and 8). The

simulated dataset with nine cerebral sources favored

the ICA approach. All PCA components required

dual-dipole models to explain the component loading

variance, whereas the ICA components were satis-

factorily explained with single-source models. This is

particularly interesting for the ICA method, since the

dataset with multiple sources contained sources that

were generally temporally overlapping but who had

random onsets. Thus, the lack of a consistent

temporal activation pattern between sources resulted

in single-source models even though temporal over-

lap occurred.

Another difference between the two methods was

that for PCA only the first few components had

information regarding the sources that were used to

generate the data. The ICA had ERP component

sources that occurred in multiple single-source com-

ponents (Fig. 4), multiple dual-source components

(Fig. 6), or multiple single-source and dual-source

components (Fig. 6). This characteristic of the ICA

components is likely due to the assumption that

underlying sources have different and non-overlap-

ping temporal activation patterns. The ICA algorithm

resulted in similar spatial components with temporal

activations that were of shorter duration than the

underlying source duration (Figs. 5 and 6). The

underlying source in each case lasted for about 100

ms, whereas activations of the ICA components lasted

only about 20–30 ms. This could be seen as an

advantage for the increased specificity of the ICA

algorithm. However, if one considered the source

activation pattern to be related to a cognitive process

that generated the longer-lasting activation of the
underlying source, then the PCA component activa-

tion covering the entire time interval of the generating

source (Figs. 5 and 6) might be considered more

beneficial. The phenomenon of multiple components

with similar spatial topography appears in real EEG

data (Jung et al., 2001a,b).

Many of the results in this study were consistent

with the underlying assumptions of the methods. For

example, under conditions of both temporal and

spatial independence in the topography and activa-

tion of the generating sources, both methods

predominantly resulted in components that could be

adequately modeled with single-dipole models. There

are some conditions for PCA, therefore, in which a

single dipole (location and moment parameters) may

be derived from single components for segmented

EEG data (Maier et al., 1987; Achim et al., 1988;

also cf. Mosher et al., 1992). Temporal correlation

between generating sources has long been known to

affect temporal PCA (Dien, 1998; Wood and

McCarthy, 1984). Similarly, the ICA method

assumes independence between the temporal activa-

tions of the underlying sources (Jung et al., 2000b,

2001a,b). The temporal overlap introduced into the

simulated dataset resulted in PCA and ICA compo-

nents requiring multiple-dipole models. The PCA

was more sensitive to the temporal independence

assumption, since the ICA results contained compo-

nents successfully modeled by single-dipole models

for the source (anterior cingulate, dorsolateral pre-

frontal cortex) that had some trials in which no other

sources were present. The spatial PCA was more

sensitive to spatial overlap in the generating sources

than was the ICA (Fig. 7). This might be expected

since the separate components of PCA are defined to

be orthogonal, whereas the component weights of

ICA are not necessarily orthogonal. Apparently, the

non-orthogonality of the generating sources is

represented in PCA by forcing the representation of

the sources on single components.

Some authors using and describing the ICA

approach have been critical of the use of PCA for

cortical source analysis in EEG and ERP data (Jung et

al., 2000a; Makeig et al., 1997, 1999). Some of these

arguments raised concerning PCA were reflected in

the current study’s analysis. However, the results of

the present study do not support a totally pessimistic

view of the PCA approach. Even in the most negative
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case for PCA, when the generating components were

spatially non-orthogonal, the equivalent current dipole

analysis still recovered the generating sources. When

the timing of the temporal activation of the cortical

sources was randomly distributed through the test

interval, the PCA method resulted in components that

distinguished nine cerebral sources in the EEG data

segments. The ICA results were more likely to result

in components that could be explained with single-

source dipole models. However, in those cases the

dipole models for the PCA method resulted in dipoles

that were accurately localized and which explained

the same amount of variance in the component

weights.

There are some problems with dipole source

analysis as applied to EEG and ERP data that are

not answered or addressed in this paper. For example,

the well-known binverse problemQ in dipole source

analysis occurs because an infinite number of dipole

generator configurations may be used to generate a

specific ERP topography. In actual EEG and ERP

data, several overlapping sources may generate a

specific set of ERP results and it is difficult to estimate

these multiple cortical dipoles with these methods.

The analyses in the current paper were confined

primarily to models in which a single-dipole location

was known, or which two- or three-dipole locations

were known. This corresponds more closely to a

hypothesis-testing framework for such analyses in

which other information constrains the locations in

which one would look for dipole sources. One

conclusion from the current analysis is that such

models may be difficult to estimate with ICA when

there is a large amount of temporal overlap between

the sources. This would be a great disadvantage for

this approach with some late ERP components (e.g.,

N4, late slow waves, P3) which may have EEG

characteristics generated by a number of cerebral

sources that have such temporal overlap. It may be

that some of these conclusions, and the use of dipole

source analysis in general, will apply more closely to

ERP components that are generated by a small

number of discrete cerebral sources.

The current study provides support for both PCA

and ICA techniques in the study of dipole sources of

ERP components. The use of such simulated data

suggests that under certain conditions both methods

are equally useful, whereas extreme spatial and
temporal overlap strain the PCA technique more than

the ICA technique. A further beneficial step would be

to compare these procedures with empirical data. This

could be done by comparing the two procedures in

their analysis of ERP data (e.g., Makeig et al., 1997,

1999). However, such comparisons would have to be

based on internal characteristics of the modeling (e.g.,

variance accounted for) or the relation of the results to

experimental variables. Another approach would be to

compare such modeling when the sources of the ERP

components are known from other methods (e.g.,

fMRI or PET). An example of such an approach is

that used by Martinez et al. (1999). They did structural

MRI, fMRI, and ERP analysis of a spatial cueing

procedure and were able to establish the location

(fMRI and dipole analysis of raw ERP) and timing

(ERP) of the P1 validity effect, even to showing an

early and late P1 effect occurring in different cortical

areas. Though they did not use component approaches

such as PCA or ICA, conceivably such a multi-

measurement approach could be accompanied by

component analysis to test the validity of this analysis

for recovering from the ERP the cortical sources

identified in the fMRI. Such empirical analyses would

answer the additional qualification of cognitive

neuroscience that other neuroimaging tools (e.g.,

fMRI, PET) give complementary information regard-

ing these components.
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