Comparison of Brain Development Trajectory between Chinese and U.S. Children and Adolescents and the Construction of Age-specific MRI Brain/Head Templates for Chinese Children and Adolescents Wanze Xie^{1,2}, John Richards¹, Kang Lee², Qiyong Gong³, & Du Lei³. ¹ Department of Psychology, University of South Carolina; ² Department of Psychology, University of Toronto, Canada; ³Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China. # **Brain Development Study** # Is there a universal pattern of brain of brain development? - Structural MRI research contributes to understanding of trajectories of brain development throughout childhood and early adulthood¹ - The current knowledge about brain structural development is limited to North American and Western European subjects - Adult structural MRIs reveal morphometric and volumetric brain differences between Asian and North American adults^{2,3} - No study has directly compared the brain development patterns and brain anatomical features between Asian and American child populations. - Our project explored differences in brain development trajectories and anatomical features between CN and US children and adolescents. # FIGURE 1 | Brain morphology develops as a function of age and nationality US --CN changes over ages between CN and US children thanges over ages between CN and US children For more results & discussion, see Xie et al.⁵ Cortex GM Volume FIGURE 3 | The development of brain volumes for 50 cortical structures # Methods # **Participants** | Age group
(years) | Nationality | Gender
(#Male) | Total N | | |----------------------|-------------|-------------------|---------|--| | 8 | CN | 12 | 16 | | | 0 | US | 11 | 19 | | | 0.10 | CN | 20 | 22 | | | 9-10 | US | 13 | 24 | | | 11 12 | CN | 23 | 36 | | | 11-12 | US | 17 | 27 | | | | CN | 19 | 39 | | | 13-14 | US | 32 | 59 | | | 45.46 | CN | 9 | 20 | | | 15-16 | US | 10 | 20 | | | Total | CN | 83 | 133 | | | | US | 83 | 149 | | # MRI Acquisition, File Preparation, and Analysis - The CN scans were collected with two 3.0 T MRI scanners in the Huaxi MR Research Center^A, US Childres Scans were from the USC-MCBI^B and ABIDE^C databases. - FSL computer programs⁴ was used for brain extraction and segmentation. So later we could measure brain volumes for regions. - Two atlases (LPBA40 and manual lobar atlas) were constructed on the individual MRIs. - Brain and head morphometric measurement was performed with the MRIcron program and scripts in Matlab. - Gray matter (GM), while matter (WM), and regional MRI volume were calculated with FSL programs. - The development of these brain features were analyzed and compared between CN and US participants. - For more details regarding the methods, see Xie et al. 5 # **Brain Templates Study** ## Introduction # Do we need population-specific brain templates? - Adult templates do not fit well to child MRIs⁶; North American templates do not fit well to Asian MRIs^{2,3}. - Differences in brain features have been shown between CN and US children⁵ - Population-specific templates are needed for Asian children. ## Results FIGURE 1 | Sagittal slices for the Chinese children brain and head templates TABLE 1 | External test: comparison of brain morphological differences between original and registered images into different templates using a 12-parameter transformation | Measurements | Original
Images (OIs)
N=20 (M±S.D.) | Registered to Chinese children templates (Diff to Ols, p value) | Registered to U.S. children templates (Diff to Ols, <i>F value</i>) | Registered to the
Chinese56
(Diff to Ols, F value) | Registered to
the US20-24
(Diff to OIs) | |--------------|---|---|--|--|---| | Length | 166.35 ± 5.97 | 3.15* | 12.00*** | 17.75*** | 10.30*** | | Width | 144.25 ± 5.23 | 1.95 | -8.40*** | 11.25*** | -9.15*** | | Height | 140.75 ± 4.94 | 1.1 | -4.10** | 2.4 | -7.70** * | | W/L | 0.87 ± 0.04 | -0.01 | -0.11*** | -0.03* | -0.11*** | | H/L | 0.85 ± 0.03 | -0.01 | -0.08*** | -0.07*** | -0.10*** | | H/W | 0.98 ± 0.04 | -0.01 | 0.03*** | -0.06*** | 0.01 | Significant differences are bolded. * p < 0.05, ** p < 0.01, *** p < 0.001 ### References - 1. Gied et al., Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci, 1999. **2**(10): p. 861-3. Lentroot et al., 2007 - 2. Lee et al., Development of Korean standard brain templates. J Korean Med Sci, 2005. **20**(3): - 3. Tang, Y.C., et al., The construction of a Chinese MRI brain atlas: A morphometric comparison study between Chinese and Caucasian cohorts. Neuroimage, 2010. **51**(1): p. 33-41. - 4. Jenkinson, M., et al., Fsl. Neuroimage, 2012. 62(2): p. 782-90. - 5. Xie et. al., Comparison of the Brain Development Trajectory between Chinese and U.S. Children and Adolescents. Frontiers in Sys Neuroscience, 2014, 8. - 6. Yoon et al., The effect of template choice on morphometric analysis of pediatric brain data, NeuroImage, **45**(3): p.769 777. #### **Footnotes** - A. West China Hospital of Sichuan University, China - 3. U of South Carolina-McCausland Center for Brain Imaging - C. Autism Brain Imaging Data Exchange. The data we used were from their normal