Comparison of Brain Development Trajectory between Chinese and U.S. Children and Adolescents and the Construction of Age-specific MRI Brain/Head Templates for Chinese Children and Adolescents

Wanze Xie^{1,2}, John Richards¹, Kang Lee², Qiyong Gong³, & Du Lei³.

¹ Department of Psychology, University of South Carolina; ² Department of Psychology, University of Toronto, Canada; ³Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China.

Brain Development Study

Is there a universal pattern of brain of brain development?

- Structural MRI research contributes to understanding of trajectories of brain development throughout childhood and early adulthood¹
- The current knowledge about brain structural development is limited to North American and Western European subjects
- Adult structural MRIs reveal morphometric and volumetric brain differences between Asian and North American adults^{2,3}
- No study has directly compared the brain development patterns and brain anatomical features between Asian and American child populations.
- Our project explored differences in brain development trajectories and anatomical features between CN and US children and adolescents.

FIGURE 1 | Brain morphology develops as a function of age and nationality US --CN changes over ages between CN and US children thanges over ages between CN and US children over ages between CN and US children

For more results & discussion, see Xie et al.⁵

Cortex GM Volume

FIGURE 3 | The development of brain volumes for 50 cortical structures

Methods

Participants

Age group (years)	Nationality	Gender (#Male)	Total N	
8	CN	12	16	
0	US	11	19	
0.10	CN	20	22	
9-10	US	13	24	
11 12	CN	23	36	
11-12	US	17	27	
	CN	19	39	
13-14	US	32	59	
45.46	CN	9	20	
15-16	US	10	20	
Total	CN	83	133	
	US	83	149	

MRI Acquisition, File Preparation, and Analysis

- The CN scans were collected with two 3.0 T MRI scanners in the Huaxi MR Research Center^A, US Childres Scans were from the USC-MCBI^B and ABIDE^C databases.
- FSL computer programs⁴ was used for brain extraction and segmentation. So later we could measure brain volumes for regions.
- Two atlases (LPBA40 and manual lobar atlas) were constructed on the individual MRIs.
- Brain and head morphometric measurement was performed with the MRIcron program and scripts in Matlab.
- Gray matter (GM), while matter (WM), and regional MRI volume were calculated with FSL programs.
- The development of these brain features were analyzed and compared between CN and US participants.
- For more details regarding the methods, see Xie et al. 5

Brain Templates Study

Introduction

Do we need population-specific brain templates?

- Adult templates do not fit well to child MRIs⁶; North American templates do not fit well to Asian MRIs^{2,3}.
- Differences in brain features have been shown between CN and US children⁵
- Population-specific templates are needed for Asian children.

Results

FIGURE 1 | Sagittal slices for the Chinese children brain and head templates

TABLE 1 | External test: comparison of brain morphological differences between original and registered images into different templates using a 12-parameter transformation

Measurements	Original Images (OIs) N=20 (M±S.D.)	Registered to Chinese children templates (Diff to Ols, p value)	Registered to U.S. children templates (Diff to Ols, <i>F value</i>)	Registered to the Chinese56 (Diff to Ols, F value)	Registered to the US20-24 (Diff to OIs)
Length	166.35 ± 5.97	3.15*	12.00***	17.75***	10.30***
Width	144.25 ± 5.23	1.95	-8.40***	11.25***	-9.15***
Height	140.75 ± 4.94	1.1	-4.10**	2.4	-7.70** *
W/L	0.87 ± 0.04	-0.01	-0.11***	-0.03*	-0.11***
H/L	0.85 ± 0.03	-0.01	-0.08***	-0.07***	-0.10***
H/W	0.98 ± 0.04	-0.01	0.03***	-0.06***	0.01

Significant differences are bolded. * p < 0.05, ** p < 0.01, *** p < 0.001

References

- 1. Gied et al., Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci, 1999. **2**(10): p. 861-3. Lentroot et al., 2007
- 2. Lee et al., Development of Korean standard brain templates. J Korean Med Sci, 2005. **20**(3):
- 3. Tang, Y.C., et al., The construction of a Chinese MRI brain atlas: A morphometric comparison study between Chinese and Caucasian cohorts. Neuroimage, 2010. **51**(1): p. 33-41.
- 4. Jenkinson, M., et al., Fsl. Neuroimage, 2012. 62(2): p. 782-90.
- 5. Xie et. al., Comparison of the Brain Development Trajectory between Chinese and U.S. Children and Adolescents. Frontiers in Sys Neuroscience, 2014, 8.
- 6. Yoon et al., The effect of template choice on morphometric analysis of pediatric brain data, NeuroImage, **45**(3): p.769 777.

Footnotes

- A. West China Hospital of Sichuan University, China
- 3. U of South Carolina-McCausland Center for Brain Imaging
- C. Autism Brain Imaging Data Exchange. The data we used were from their normal