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a b s t r a c t 

Electroencephalographic (EEG) source reconstruction is a powerful approach that allows anatomical localization 
of electrophysiological brain activity. Algorithms used to estimate cortical sources require an anatomical model 
of the head and the brain, generally reconstructed using magnetic resonance imaging (MRI). When such scans 
are unavailable, a population average can be used for adults, but no average surface template is available for 
cortical source imaging in infants. To address this issue, we introduce a new series of 13 anatomical models for 
subjects between zero and 24 months of age. These templates are built from MRI averages and boundary element 
method (BEM) segmentation of head tissues available as part of the Neurodevelopmental MRI Database. Surfaces 
separating the pia mater, the gray matter, and the white matter were estimated using the Infant FreeSurfer 
pipeline. The surface of the skin as well as the outer and inner skull surfaces were extracted using a cube marching 
algorithm followed by Laplacian smoothing and mesh decimation. We post-processed these meshes to correct 
topological errors and ensure watertight meshes. Source reconstruction with these templates is demonstrated 
and validated using 100 high-density EEG recordings from 7-month-old infants. Hopefully, these templates will 
support future studies on EEG-based neuroimaging and functional connectivity in healthy infants as well as in 
clinical pediatric populations. 
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. Introduction 

Our ability to study the functional connectivity of the brain during
ts early years is crucial in understanding neurotypical development as
ell as abnormal developmental trajectories associated with conditions

ike attention deficit hyperactivity disorder ( Konrad and Eickhoff, 2010 )
nd autism ( O’Reilly et al., 2017 ). However, most EEG studies in infants
re performed at the scalp level, and therefore cannot localize the cor-
ical or subcortical origin of the activity ( Nunez and Srinivasan, 2006 ;
an de Steen et al., 2019 ) and are easily confounded by the effect of the
ecording reference ( Bringas Vega et al., 2019 ; Guevara et al., 2005 ) and
olume conduction ( Nunez et al., 1997 ; O’Reilly and Elsabbagh, 2020 ;
an de Steen et al., 2019 ). 

Different approaches have been developed to address these limita-
ions, including algorithms to estimate the neuronal sources that give
ise to EEG scalp activity. Such algorithms can estimate sources within
olumes or over surfaces, depending on how dipolar sources are placed
Abbreviations: BEM, boundary element method; CDR, current density reconstructio
nfant EEG Data Integration Platform; ERP, Event-related potential; ERSP, Event-rela
hy; MPRAGE, magnetization-prepared rapid gradient-echo; NMD, Neurodevelopmen
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n the model of the head. For example, all dipolar contributions can
e postulated to sum linearly and be represented with equivalent cur-
ent dipoles (ECD) whose position and orientation are estimated from
calp EEG activity. Such an approach presents some analytic advan-
ages (e.g., mathematical tractability when used with spherical head
odels) and can be motivated when one or a few specific sources

f activity clearly dominates like in the context of epileptic activity
 Ebersole, 1994 ) or for localized independent components ( Acar et al.,
016 ). By generalizing the ECD approach to a large number of dipoles
nd using sophisticated finite element models (FEM) of the head, we
an also perform current density reconstruction (CDR). In general, these
olumetric approaches (i.e., CDR, ECD) localize dipoles using fewer a
riori constraints than source localization methods based on cortical sur-
aces. For example, dipoles obtained from volumetric approaches may
e positioned outside of gray matter regions and their orientation may
ot consider known structural information such as cytoarchitectural
roperties. 
n; CSF, cerebrospinal fluid; EEG, electroencephalography; EEG-IP, International 
ted source potential; FEM, finite element method; MEG, magnetoencephalogra- 
tal MRI Database; MRI, magnetic resonance imaging. 
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Alternatively, sources can be estimated over surfaces in order to con-
train the position and the orientation of dipolar sources based on our
nderstanding of EEG generative mechanisms. Scalp EEG is generally
odeled as being a volume-conducted open field generated when a large
umber of postsynaptic currents impinges simultaneously on the api-
al dendrites of many pyramidal cells comprised within a small corti-
al patch ( Baillet et al., 2001 ). This assumption is motivated by 1) the
roximity of the cortex to the scalp, 2) the creation of a dipolar source
etween the apical tree and the soma of pyramidal cells following post-
ynaptic depolarization of apical dendrites, and 3) the creation of an
pen field due to the parallel alignment of the apical dendrites. Given
his understanding of EEG generative mechanisms, it is a common prac-
ice to estimate EEG cortical sources by fitting the amplitude of dipoles
ositioned and orientated following the cortical surface. Further, aside
rom this physiological motivation, there are good reasons for wanting
o use surface-based source estimation. For example, from a structural
oint of view, using surfaces has been shown to result in more precise
o-registration ( Ghosh et al., 2010 ). Also, it is worth noting that func-
ionally relevant cortical parcellations follow the topology of the cortical
heet and that the distances along this surface are consequently gener-
lly more functionally relevant than 3D Euclidean distances. For exam-
le, the properties of inter-hemispheric connectivity have been shown
o be impacted by whether two neuronal populations are in homotopic
egions (i.e., depending on the cortical topology) rather than by whether
hey are separated by short homotopic distances (i.e., depending on 3D
uclidean distances) ( O’Reilly and Elsabbagh, 2020 ). Due to the fold-
ng of the cortical sheet, regions that are very close in space (e.g., on
he opposite sides of a sulcus or a fissure) may be relatively far apart
ith respect to the cortical sheet and, hence, may be functionally very
ifferent. A small localization error on volumes can therefore result in
ttributing sources to substantially different functional regions. 

Surface and volume source estimation can eventually be combined,
or example by aligning dipoles according to the cortical mesh or to
he estimated orientation of the cortical columns ( Bonaiuto et al., 2020 )
hile placing volumetric grids of dipoles with free orientation in sub-

ortical nuclei ( Attal and Schwartz, 2013 ). Additional information from
ther modalities (e.g., tractography or functional MRI) can also be used
o further constrain the source models ( Lei et al., 2015 ), although such
unctionalities are generally not readily available in the main source
stimation toolboxes and therefore require custom implementation. 

Source estimation has not been frequently reported in the infant EEG
iterature, with the notable exception of a few research groups that used
olumetric approaches such as CDR with realistic head models built
rom MRIs of head-size-matched individuals ( Xie and Richards, 2017 )
r from age-matched MRI averages ( Lunghi et al., 2019 ), or using ECD
ith a four-shell ellipsoidal head model ( Ortiz-Mantilla et al., 2019 ).
ource imaging is more frequently used in magnetoencephalography
MEG) ( Kao and Zhang, 2019 ), but it generally relies on over simplis-
ic spherical models to overcome the absence of realistic head models
 Imada et al., 2006 ; Kuhl et al., 2014 ) or it uses custom-built subject-
pecific head models that are not reusable by the research community
 Ramírez et al., 2017 ; Travis et al., 2011 ). 

The Neurodevelopmental MRI Database (NMD; Richards et al.,
016 ) contains average volume segmentations of head tissues based
n BEM and FEM. These segmentations can be used directly by
ome toolboxes, such as FieldTrip ( Oostenveld et al., 2011 ), to build
ead models for volume-based source estimation. This functionality is,
owever, by no means available in all popular toolboxes. FieldTrip
lso supports surface-based source estimation directly from volumet-
ic data by interfacing with external surface extraction software such as
so2mesh ( Fang and Boas, 2009 ), Brain2Mesh ( Tran and Fang, 2017 ), or
reeSurfer ( Fischl, 2012 ). However, these procedures have been devel-
ped for adult subjects and are unlikely to perform well on infant MRIs
ue to various issues such as poor white matter/gray matter contrast
 Phan et al., 2018 ; Schumann et al., 2010 ). Furthermore, other popu-
ar software packages such as Brainstorm ( Tadel et al., 2011 ) and MNE-
2 
ython ( Gramfort et al., 2013 ) require the user to provide pre-computed
ortical surfaces and provide only a limited support for volumetric BEM
r FEM segmentations. 

In addition to EEG sensor recordings, estimating neuronal sources
equires 1) a structural model of the head (conductor model); 2) a
odel of source distributions (source space); 3) the position of the EEG

ensors on the subjects’ head (electrode placement, coregistered with
he source and head model); 4) a method for estimating scalp activity
enerated by neuronal sources (forward modeling); and 5) an inver-
ion scheme for estimating the probable neuronal sources correspond-
ng to the observed scalp activity (inverse modeling). The first compo-
ent, the structural head model, is generally built by post-processing the
articipants MRI using specialized software designed for that purpose,
uch as FreeSurfer ( Fischl, 2012 ), CIVET ( MacDonald et al., 2000 ), the
omputational Anatomy Toolbox ( Gaser and Dahnke, 2016 ), BrainVISA
 Rivière et al., 2009 ), SPM ( Mattout et al., 2007 ), FSL ( Jenkinson et al.,
012 ), or BrainSuite ( Shattuck and Leahy, 2002 ). However, the time
nd expense associated with MRI scanning may be prohibitive or not
ossible with certain groups of participants because of health issues or
thical concerns. To address the lack of structural information in EEG
nalysis, population averages of head and brain structures have been
roposed and can be used for computing approximate forward models
 Fuchs et al., 2002 ; Valdés-Hernández et al., 2009 ). The objective of the
urrent study is to extend these methods to infants by leveraging the re-
ently published infant version of the FreeSurfer pipeline that supports
urface extraction from MRI in participants from zero to 24 months of
ge ( Zöllei et al., 2020 ). As an outcome of this work, we are releasing 13
ew surface templates that can be used for standardized surface-based
ource reconstruction in infants within this age range. 

. Method 

.1. Volumetric dataset 

To build age-specific head models that can be used for surface-based
EG source reconstruction, we used the infant and preschool segments
f the NMD version 2 ( Richards et al., 2016 ), which contains brain and
ead MRI averages, boundary element method (BEM) and finite ele-
ent method (FEM) volume segmentation of head tissues, as well as

orresponding electrode placements. The NMD provides distinct MRI
verages for the brain and head, obtained from the same sample, but
ptimizing the alignment of brain structures and outer head tissues, re-
pectively. See ( Sanchez et al., 2012a ) for more details on volume av-
raging. We will refer to the coordinate space for these two kinds of
olumes as brain space and head space , respectively. 

To extract outer head surfaces, we used NMD’s four-compartment
EM segmentation “BEM4 ”, which labels every non-null voxel in head
pace as belonging either to the skin, the skull, the cerebrospinal fluid
CSF), or the brain. The identification of the brain, the skull, and
he scalp on individual MRI was based on FSL Brain Extraction Tool
 Bartlett and Smith, 1999 ; Smith, 2002 ). See ( Richards, 2013 ) for more
etails about the individual MRI segmentation approach adopted for
uilding the NMD. 

Table 1 lists the sample size per gender as well as the age range of the
hildren included in every average. All averages are based on 3T scans
sing a T1 magnetization-prepared rapid gradient-echo (MPRAGE) se-
uence. 

.2. Software 

The brain averages were co-registered with the head averages us-
ng FLIRT ( Jenkinson et al., 2002 ) and brain surfaces were extracted
sing the Infant FreeSurfer pipeline ( Zöllei et al., 2020 ). Most of the
ata processing and analyses have been performed using custom code
elying on various Python packages, the principal ones being connected-
omponents-3d 1.5.0 ( Kemnitz and Silversmith, 2020 ), Matplotlib 3.1.2
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Table 1 

Sample size and age range for the different MRI averages. 

Template Female Male N/A Age (months) 

2 week 26 17 0 < = 0.5 

1 month 42 60 0 0.5–1.5 

2 month 40 29 0 2–2.5 

3 month 21 17 0 2.5–4 

4.5 month 29 25 0 4–5.5 

6 month 55 56 0 5.5–7 

7.5 month 33 62 0 7–8.5 

9 month 36 25 0 8.5–10 

10.5 month 21 21 0 10–11.5 

12 month 68 101 0 11.5–13 

15 month 41 37 0 14.5–17 

18 month 31 45 0 17.5–20 

2 year 57 76 2 23–26 
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 Hunter, 2007 ), MNE-Python 0.20.0 ( Gramfort et al., 2014 , 2013 ),
iBabel 3.0.0 ( Brett et al., 2019 ), Numpy 1.18.2 ( Oliphant, 2006 ;
alt et al., 2011 ), Pandas 1.0.3 ( McKinney, 2010 ; The pandas devel-

pment team, 2020 ), Pillow 7.0.0 ( Clark et al., 2020 ), PyCortex 1.2.0
 Gao et al., 2015 ), PyMeshFix 0.13.3 ( Attene, 2010 ), Scikit-Image 0.16.2
 Walt et al., 2014 ), Scipy 1.4.1 ( Virtanen et al., 2020 ), trimesh 3.5.12
 Dawson-Haggerty et al., 2020 ), and XArray 0.15.1 ( Hoyer and Ham-
an, 2017 ). Further, FieldTrip and the SimBio toolbox ( Vorwerk et al.,
018 ) were also used for our comparative analysis between surface and
olume source estimation. 

.3. Head-brain co-registration 

Because the brain and head surfaces are computed from different
RI averages, we used FLIRT to find optimal affine transforms for trans-

orming the average brains to head space. For this procedure, we used
he skull-stripped MRI and weighted the contribution of the voxels in
he brain average using a binary mask that excluded from the objective
unction the contribution of voxels outside of the brain volume. Such a
eighting was used for the brain averages but not the head averages in
rder to ensure that the brains snugly fit within the skull cavity in head
pace. 

.4. Surface extraction 

To extract the brain surfaces, we normalized the intensity of the MRI
f brain averages (FreeSurfer mri_nu_correct command) and converted
hem to a standard 256 × 256 × 256 1-mm isotropic space (FreeSurfer
ri_convert –conform command). Then, we used the Infant FreeSurfer

econstruction pipeline (infant_recon_all; de Macedo Rodrigues et al.,
015 ; Zöllei et al., 2020 ) to extract the surfaces separating the pia
ater, the gray matter, and the white matter. During this process, the
esikan et al. (2006 ) and the Destrieux et al. (2010 ) cortical parcella-

ions were automatically computed. We skipped the skull stripping step
ncluded in the Infant FreeSurfer pipeline since the brain averages from
he NMD are already skull stripped. 

For the head surfaces, we used the “BEM4 ” segmentation and ran
 cube marching algorithm (scikit-image marching_cubes_lewiner func-
ion) followed by a Laplacian smoothing (trimesh filter_laplacian func-
ion) and a mesh decimation (MNE-Python decimate_surface function).
urface topological defects such as holes, inverted vertex normals, or
ertices with fewer than three neighbors were corrected using cus-
om Python code relying on external functions (MeshFix.repair from
yMeshFix; repair.fix_normals and Trimesh.remove_degenerate_faces
rom trimesh) and on code snippets adapted from various MNE-Python
unctions. Final meshes were checked for water tightness using trimesh.
urther, one BEM volume had artifacts appearing as small line segments
ver the background. We corrected these by zeroing any small sepa-
ated cluster of non-null voxels using the connected_components func-
ion from connected-components-3d. 
3 
Surface intersections were verified using a ray tracing algorithm
rom trimesh and outer meshes were pushed back along their vertex
ormal direction where intersections were detected. Out of 39 surfaces
i.e., the scalp, outer skull, and inner skull surfaces for the 13 templates),
7 needed 2.86% ( ± 3.37%) of their vertices to be corrected by 1.27 mm
 + /- 1.82 mm) on average. Examples of the initial volumes and extracted
urfaces using these two parallel pipelines are illustrated in Fig. 1 . 

.5. Sensor co-registration 

To map the scalp activity to neuronal sources, the EEG sensors
ust be placed over the scalp of the head model. Average electrode
lacement for the 3-, 4.5-, 6-, 7.5-, 9-, 12-, and 24-month time points
ere previously computed from recorded placements for the HydroCel
SN 128 channel sensor net and the 10–5, 10–10, and 10–20 systems
 Richards et al., 2015 ). These average placements are available in the
MD. Since no empirical data were available, the electrode placement

or the 2-week, 1- and 2-month templates were obtained from the 3-
onth average electrode placement. This was done by registering the
0–10 positions from the 3-month average template to every partici-
ant of those age in the NMD, using the coherent point drift method
 Myronenko et al., 2006 ; Myronenko and Song, 2010 ), and translating
he 3-month electrode placement into the participant space. Then the
articipant MRIs were registered to their age-appropriate average tem-
late and their electrode positions were appropriately translated into
he average template space and averaged across participants. The aver-
ged electrode positions were further scaled to fit the head in the head
RI average. The same procedure was used to fit the 12-month elec-

rode placement to the 10.5-, 15-, and 18-month time points. Further,
he electrode placements were compared to the scalp surface of the head
odels and the electrodes were automatically moved to the closest point

n this surface. These fitted electrode placement are included with the
emplates presented here to facilitate re-use. 

.6. Validation dataset 

For source reconstruction, we used the same set of EEG recordings
o validate the different templates in order not to confound the effect
he recordings with the effect of the templates. The exact properties
f the scalp signals are not of any particular relevance for these tests
nd, accordingly, simulated signals could have been used. However,
o ensure a higher ecological validity, we used real recordings from
-month-old infants (female = 62; male = 36; unknown = 2) from the Lon-
on segment of the International Infant EEG Data Integration Platform
EEG-IP; van Noordt et al., 2020 ). These EEGs were recorded at 500 Hz
ith HydroCel GSN 128 channel sensor nets during an event-related
aradigm with a 200 ms baseline period followed by the presentation
f a visual stimulus and a 800 ms response period. Images of faces look-
ng directly at or away from the participant were used as target stimuli
nd randomized noise images were used as a control condition. For our
nalyses, we used the version of the EEG-IP that has been preprocessed
sing the EEG-IP-L pipeline ( Desjardins et al., 2021 ), which includes
n automatic artifact rejection step and a thorough manual quality
ontrol. 

.7. Comparison of modeling approaches 

We used FieldTrip to compare the sources estimated with our new
urface templates and the volume templates from the NMD. We distin-
uished the impact of the source model (surface versus volume distribu-
ions) and the head model (FEM versus BEM) by using a 2 × 2 factorial
pproach. We performed these comparisons for the seven ages for which
EM segmentations were publicly available in NMD at the time of the
nalysis (3-, 4.5-, 6-, 7.5-, 9-, 12-, 24-month). 

The BEM head models were computed from our surface templates
sing FieldTrip’s dipoli method ( Oostendorp and Oosterom, 1989 ) and
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Fig. 1. Surface extraction. An example of the types of volumes we used from NMD is shown on the left side. From this volumetric dataset, two parallel processes 
were run to extract the brain surfaces and cortical parcellations (top right; using FLIRT and Infant FreeSurfer) as well as the head surfaces (bottom right; using custom 

Python code). 
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he following standard conductivities: gray matter: 0.3300 S/m; skull:
.0041 S/m; scalp: 0.3300 S/m. The FEM head models were built us-
ng the SimBio toolbox and the MND 10-compartment FEM segmenta-
ion with the following conductivities ( Gabriel, 1996 ; IT’IS Foundation ):
hite matter: 0.14 S/m; gray matter: 0.33 S/m; CSF: 1.79 S/m; dura
ater: 0.368 S/m; skull: 0.01 S/m; skin: 0.43 S/m; muscle: 0.355 S/m;

yes: 1.55 S/m (conductivity for the vitreous humor); nasal cavity: 3e-
5 S/m (conductivity for air at 20 °C); non myelinated axons: 0.33 S/m
conductivity for gray matter). 

Around 8000 ( ± 4 due to discretization errors) dipoles were placed
ithin the cortical gray matter for each source model. For the sur-

ace source models, we used FieldTrip’s meshresample function to down-
ample the cortical meshes from our surface templates and placed the
ources at the position of the remaining vertices. For the volume source
odels, the dipoles were placed at the center of voxels randomly sam-
led so that their volumetric density was constant across the cortical
egions. The voxel classification used for this process was taken from
he FreeSurfer standard aseg + aparc.mgz file (i.e., subcortical segmenta-
ion plus cortical parcellation according to the Desikan-Killiany scheme)
vailable with the surface templates. 

The dipole orientation in the leadfield was unconstrained. However,
or the source estimation from the surface model, the leadfield dipoles
ere projected along the normals of their corresponding cortical mesh
ertex. This alignment allows factoring into the surface model the bio-
hysical a priori that EEG source dipoles are aligned with the pyramidal
pical projections, orthogonal to the cortical surface. Sources were esti-
ated using minimum norm estimation (MNE) with the regularization
arameter 𝜆2 = 1. 
(

4 
Since the dipoles are not placed at the same positions in the dif-
erent source models, we need to average sources within brain regions
o make them comparable across models. For statistical analyses, we
sed a k-d tree ( Bentley, 1975 ) and a nearest neighbor rule to attribute
ource dipoles to brain regions by comparing dipole positions with
seg + aparc.mgz voxel positions. 

.8. Source estimation for the functional analysis 

For this analysis, EEG event-related source potentials (ERSP) were
stimated using MNE-Python and compared between our 13 infant
emplates and FreeSurfer’s “fsaverage ” adult template. This latter tem-
late was built using spherical surface averaging ( Fischl et al., 1999 )
f the Buckner40 cohort which comprises 40 non-demented subjects
21 women) ranging in age from 18 to 30 and 65 to 93 years of
ge ( FreeSurfer team, 2020a ). The same parameters were used for
ource estimation across templates. We used the dynamical statisti-
al parameter mapping (dSPM; Dale et al., 2000 ) minimum-norm in-
erse operator with regularization parameter 𝜆2 = 1. The other param-
ters were left to their default value, as set by MNE-Python, includ-
ng the conductivities (gray matter: 0.3 S/m; skull: 0.006 S/m; scalp:
.3 S/m). The covariance matrix was estimated using method = “auto ”

n the mne.compute_covariance function, which uses four different esti-
ators (the Ledoit-Wolf estimator ( Ledoit and Wolf, 2004 ) with cross-

alidation for optimizing alpha, diagonal regularization, sample covari-
nce, and factor analysis with low-rank ( Barber, 2012 )) and chooses the
ptimal solution based on log-likelihood estimation and cross-validation
 Engemann and Gramfort, 2015 ). 



C. O’Reilly, E. Larson, J.E. Richards et al. NeuroImage 227 (2021) 117682 

Fig. 2. Thirteen templates from 2 weeks to 2 years of age including head sur- 
faces for the scalp and the outer and inner faces of the skull, as well as cor- 
tical surfaces separating the meninges, the gray matter, and the white matter. 
Showing non-decimated meshes rendered with Blender. Spheres with a 5 mm 

diameter show the placement of electrodes for the HydroCel GSN 128 channel 
sensor net (blue) and standard fiducial points (red). 
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. Results 

.1. Templates and source reconstruction 

We built surface-based structural templates at 13 time points be-
ween 2 weeks and 2 years of age ( Fig. 2 ). These templates have been
erified to be compatible for source reconstruction with Brainstorm,
ieldTrip, and MNE-Python. 

.2. Comparison with volume source models and FEM head models 

The event-related potentials (ERP) for the “noise ” (control) and the
face ” conditions for an occipital channel (E75/Oz) across the record-
ngs of the validation dataset are shown in Fig. 3. a. These are consistent
ith the ERP previously reported for this database ( Desjardins et al.,
021 ). The noise condition in this experiment produced consistently
uch larger ERP, potentially because these events were presented less

requently than the face stimuli, causing a surprise effect similar to what
s found in an oddball paradigm. Given the higher amplitude of its re-
ponse, the analysis in this section is performed for the noise condition
nly. 

We averaged the ERSP 1 within brain regions and compared them
cross combinations of head and source models using Pearson’s coeffi-
ient of correlation ( Fig. 3. b). The median values of these distributions
re shown separately for each different template in Fig. 3. c. ERSP for
he regions with the highest ( 𝜌= 0.837; left hemisphere lateraloccipital
egion) and the lowest ( 𝜌= 0.294; left hemisphere medialorbitofrontal re-
ion) correlations between the FEM-surface and the BEM-volume mod-
ls are shown in Fig. 3. d. Similarly, Fig. 3. e shows the ERSP for the left
1 More accurately, the output of the FieldTrip scripts used for this comparative 
nalysis are power values rather than potentials. This contrasts with the func- 
ional validation performed using MNE-Python, which used potentials rather 
han power values. 
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5 
emisphere lateraloccipital region, but overlays the ERSP estimated for
ll the seven different templates in order to visualize how much these
ources vary across templates. We averaged the activity within a win-
ow covering the 150–200 ms peak of activity (shown as a grayed re-
ion in Fig. 3. d) and plotted the topomap for the ERP ( Fig. 3. f) and the
ource distribution over the cortex for the ERSP ( Fig. 4 ). The scale of the
EM source estimates we obtained from the FieldTrip-SimBio software
ere found to depend on the template ( Fig. 3. g). To make source pro-
les more comparable, we normalized the ERSP and ERP by dividing
hem by their standard deviation in Fig. 3. a,d,e. Also, to make it easier
o compare source distributions across models and templates, the source
mplitudes shown in Fig. 4 have been mapped to their corresponding
ercentile, and values from the 75th percentile upward were linearly
apped to a color gradient ranging from transparent ( < 75th percentile)

o dark red (100th percentile). With this mapping, every reconstruction
hown in Fig. 4 has the same proportion of red coloration, only the spa-
ial distribution varies across models and templates. 

In order to compare the impact of the age templates, the head mod-
ls, and the source models, we linearly regressed the values of the me-
ian ERSP correlations between pairs of head-source models (as com-
uted for Fig. 3. c) against a linear model including as factors the tem-
late, the head model pair (FF: FEM-FEM; BB: BEM-BEM; FB: FEM-BEM),
nd the source model pair (SS: surface-surface, VV: volume-volume; SV:
urface-volume). The regression results are summarized in Table 2 . As
an be seen from p-values and regression coefficients, with our specific
odeling choice, the head model is the factor that has the largest effect,

ollowed by the source model. The difference between age templates is
ither marginally (0.5 < p -value < 0.1) or not statistically significant
n these comparisons. Since Fig. 3. e suggest that the effect of the age
emplate may be different for BEM and FEM head models, we computed
ne-way ANOVAs of the median correlation (across brain regions) sep-
rately for the BEM and the FEM, treating the template as a factor. As
ould be expected from Fig. 3. e, there was a significant effect of tem-
late for the FEM ANOVA (F 6, 480 = 7.35, p = 1.5e-7) but not for the
EM ANOVA (F 6, 480 = 1.04, p = 0.40). 

.3. Structural validation 

The structural validity of the proposed templates is directly depen-
ent on the validity of MND’s MRI averages used as input data and the
nfant freesurfer pipeline used to extract the surfaces, which have both
een validated in previous studies ( de Macedo Rodrigues et al., 2015 ;
illmore et al., 2015b , 2015a ; Sanchez et al., 2012a , 2012b ; Xie et al.,
015 ; Zöllei et al., 2020 ). Nevertheless, to validate the final result, we
alculated the relative volume of brain regions (v r ) as the number of vox-
ls per subcortical and cortical brain region, as defined in the FreeSurfer
seg + aparc.mgz files, divided by the total number of voxels in all seg-
ented brain regions. These relative volumes appear to be very con-

istent across the templates, as demonstrated by very high correlations
cross models from the different ages ( Fig. 5. a,b). We also computed
ow much the relative size of each region is different from the average
elative size across the templates (i.e., ( 𝑣 𝑟 − 𝑣 𝑟 )∕ 𝑣 𝑟 ) ( Fig. 5. c,d). 

We do not observe large inconsistencies across the templates, ex-
ept for the parahippocampal and the frontalpole regions which aver-
ge volume is less consistent than the other regions. We should note
hat some variations are expected due to the development of the brain.
lthough we do not have normative data for a systematic comparison,

he pattern of variations can distinguish potential modeling issues from
ormal developmental effects. For example, the smooth and constant
atterns of decreasing relative volume of the thalamus across the ages
nd its similarity across hemispheres ( Fig. 5. d) suggest that this effect
s probably associated with normal development, which is compatible
ith what is reported in the literature ( Sussman et al., 2016 ). This con-

rasts for example with the comparatively erratic pattern of variation
or the parahippocampal region ( Fig. 5. c), which is more likely due to
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Fig. 3. a) ERP for the “noise ” and the “face ”
conditions, averaged across epochs and sub- 
jects, for the E75/Oz channel. b) Distribution 
of the correlation of brain region ERSP between 
pairs of models. Model comparisons are labeled 
as H 1 H 2 -S 1 S 2 , where H 1 and H 2 represent the 
two head models and S 1 and S 2 represent the 
two source models, with the models being iden- 
tified with the following shorthand notations: 
F: FEM, B: BEM, S: surface, V: volume. c) Me- 
dian (across brain regions) correlation between 
pairs of models, for each template separately. 
d) ERSP for the regions which show the high- 
est and the lowest correlation for the FB-SV 

model comparison. The ERP (channel E75/Oz) 
is also overlaid on this plot. The average of 
the activity within the grayed window (150–
200 ms) is used for the subsequent panels and 
for source distributions in Fig. 4 . e) Similar 
to the right part of panel d, this panel shows 
ERSP for the regions with the highest correla- 
tion for the FB-SV model comparison, but illus- 
trate the ERSP separately for the different tem- 
plates. g) Topomap of the scalp ERP. h) Dis- 
tribution of time-averaged ERSP for the four 
models. Light-colored lines show the distribu- 
tion for the different templates, whereas the 
darker colors show the distribution after aver- 
aging across templates. 

Table 2 

Linear regression using the model “correlation ~ tem- 
plate + source_model + head_model ”. Only model comparisons where only 
one factor (head model or source model) has been modified (i.e., FF-SV, BB-SV, 
FB-SS, and FB-VV) were used. Median correlations are used (i.e., no repeated 
measures). 

coefficient standard error t-value P-value 

Intercept 0.7142 0.022 32.499 < 0.001 

Template: 3 vs 24 month − 0.0419 0.039 − 1.08 0.295 

Template: 4.5 vs 24 month − 0.06 0.039 − 1.545 0.140 

Template: 6 vs 24 month − 0.078 0.039 − 2.008 0.060 

Template: 7.5 vs 24 month − 0.0751 0.039 − 1.932 0.069 

Template: 9 vs 24 month − 0.0467 0.039 − 1.202 0.245 

Template: 12 vs 24 month − 0.0741 0.039 − 1.907 0.073 

Source model: SS vs SV 0.1021 0.019 5.429 < 0.001 

Source model: VV vs SV 0.1485 0.019 7.899 < 0.001 

Head model: BB vs FB 0.2426 0.019 12.903 < 0.001 

Head model: FF vs FB 0.221 0.019 11.75 < 0.001 
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ifficulties in accurately parcellating this region during the first years
f life. We can also see that the correlations of the relative volume of
rain regions across the templates are larger for subcortical segmenta-
ions than for cortical parcellations. This observation may be partly due
o the fact that the Desikan-Killiany parcellation scheme is based on the
opology of sulci and gyri which are not fully formed in infants. 
6 
.4. Functional validation 

We further validated the templates by testing the hypothesis that
EG sources should be more correlated when estimated from templates
f similar age than from templates with greater age differences. Thus,
e computed correlations between the ERSP for pairs of templates and
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Fig. 4. Spatial source distributions for the different models (columns) and templates (rows) shown from different views (panels a-d). The models are coded as H-S, 
where H represents the head model and S represents the source model, with models identified with the following shorthand notations: F: FEM, B: BEM, S: surface, 
and V: volume. The values at the right of each row indicate the template age, in months. Identical data are shown in different views from top-left-back (a), top (b), 
back (c), and front (d). Sources with larger amplitude than the 75th percentile are color-coded linearly according to the percentile, from transparent (75th percentile) 
to dark red (100th percentile). 

7 
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Fig. 5. Structural validation of the surface templates. a,b) Correlation of the relative volume 𝑣 𝑟 of cortical (a) and subcortical (b) regions between templates. Note 
that the lower end of the correlation colorbar is greater than 0.998. c,d) Relative differences between a template 𝑣 𝑟 and the across-template averages ( 𝑣 𝑟 ) for cortical 
(c) and subcortical (d) regions. 

8 
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Fig. 6. a) Average correlations between the ERSP time-series computed from different templates. b) As in a, but excluding the fsaverage template and adjusting the 
scale to emphasize the pattern of variation between the infant templates. c) Average correlations (as computed for panels a and b) as a function of the log-transformed 
age difference between templates. d-f) Similar as for panels a-c, but reporting Pearson correlation coefficients across brain regions instead of time. g) Average ERSP 
time-series correlation computed separately for every region and averaged for each template separately. h) Cortical representation showing average time-series 
correlation (mean values per column of panel g) lower than 0.6 colored in red or green, depending on whether they show (red) or not (green) the typical decrease 
in correlations with increasing age differences. 
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veraged these correlation coefficients across stimulus conditions, sub-
ects, and Desikan-Killiany brain regions. Heat maps in Fig. 6. a,b show
igh average correlations between infant templates within the 0–2 year
ge range. However, there is a general tendency for correlations close to
he diagonal to be larger than those far from the diagonal, confirming
9 
hat differences in estimated sources increase with template age differ-
nces. Further, the correlation with the sources computed using fsav-
rage is substantially lower than any correlation infant templates, con-
rming inaccurate source estimation when using an adult template for
nalyzing infant EEG. 
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The anti-correlation between the similarity of estimated sources and
ifferences in template age (i.e., the smaller the difference in tem-
late age, the larger the similarity between estimated sources) is clearly
emonstrated by linearly regressing the correlations plotted in Fig. 6. a,b
y the absolute differences between the logarithm of the template ages
 𝜌= − 0.67; R 

2 = 0.479, p-value = 1.1e-12, N = 78; Fig. 6. c). Similar obser-
ations can be made by correlating ERSP across brain regions rather
han across time ( 𝜌= − 0.64; R 

2 = 0.408, p-value = 1.6e-10, N = 78; Fig. 6 ,
-f). We further computed the average correlations between any given
emplates and all other templates, for each region separately, and ob-
erved that the correlation of the ERSP between templates is very high
or most regions but is lower and more variable in some cases ( Fig. 6. g),
articularly around the motor and somatosensory areas ( Fig. 6. h). 

. Discussion 

A reliable estimation of EEG cortical sources requires the use of
ndividualized or, when not available, population-averaged structural
odel of the head. Standard automated approaches developed for build-

ng such head models from adult MRI scans do not provide satisfac-
ory results in the pediatric population due to a lower contrast between
hite and gray matter ( Phan et al., 2018 ; Schumann et al., 2010 ). Fur-

her, most automated pipelines rely on co-registering individual MRI
gainst a population average, which may cause significant errors when
sing an adult average for co-registering younger populations. With
ome manual intervention to guide or correct white matter and gray
atter classification, FreeSurfer can provide satisfactory results in chil-
ren who are at least five years old ( Schumann et al., 2010 ) but not
ounger ( FreeSurfer team, 2020b ). For that reason, an infant version of
he FreeSurfer pipeline has recently been developed that covers the 0–2
ear age range ( Zöllei et al., 2020 ). To our knowledge, no similar ap-
roach currently exists that covers the 2–5 year range, which is a topic
hat should definitely be addressed by future studies. To further support
he use of source reconstruction in EEG and MEG neurodevelopmental
tudies in infants, we used this pipeline to develop 13 new surface tem-
lates for infants in this age range. These templates can be used with any
oftware relying on surfaces of the brain and the head for their forward
odels. 

For approaches relying on volume source models (e.g., CDR) instead
f surface source models, BEM and FEM segmentations are available in
he NMD. We demonstrated how sources estimated with models built
sing these different volumes and surfaces can be compared using a fac-
orial design distinguishing the impact of the head model (FEM or BEM)
nd the source model (surface or volume). In doing so, we observed
hat the FEM models seem more sensitive (or the BEM models are more
table) across templates, but the data currently available do not allow
stablishing with certainty if the FEM approach is more sensitive to sig-
al or noise (i.e., whether increased between-template differences for
EM in Fig. 3. e indicate a finer capacity to capture age-specific differ-
nces, or if it reflects some unreliability or instability of this modeling
pproach). 

BEM head models are designed as successive layers of tissues with
ifferent conductivities, and algorithms using these models generally
ely on the fact that the inner compartments fit within the outer com-
artments. Some of these algorithms, for example, cannot work correctly
ith meshes that are not watertight. Therefore, as opposed to FEM,

his modeling approach cannot accommodate local layer discontinuities
uch as ventricular CSF or fontanels. This can be considered a limita-
ion of the BEM approach for infant studies since these local features
ave been shown to have a significant effect on source reconstruction
n FEM studies ( Azizollahi et al., 2016 ; Lew et al., 2013 ; Pursiainen et al.,
016 ). When available, infant-compatible MEG systems can also be used
o complement EEG in order to obtain source estimates that are more
obust to the effects of fontanels ( Lew et al., 2013 ). As MEG and EEG sys-
ems are recording related but complementary signals, EEG should not
e simply supplanted by MEG. Source accuracy should rather be im-
10 
roved by combining both modality whenever possible ( Sharon et al.,
007 ). 

The use of head models for different ages within the 0–2 year range
esulted in relatively mild differences in estimated EEG sources as op-
osed to the use of an adult template, which resulted in much more
issimilar sources. These results suggest that our templates are fairly
onsistent across age. They might nevertheless be improvable in some
egions that showed lower and more variable correlations between tem-
lates ( Fig. 6. g). In the absence of quantitative resources reporting matu-
ity indices per age and brain regions, it is difficult to establish whether
hese lower correlations are due to larger maturational changes in these
egions during the developmental period covered by our analyses. We
evertheless note that most of these regions are around the motor and
omatosensory areas, which are known to develop at a fast rate in the
rst few months following birth ( Ganzetti et al., 2014 ), whereas the cor-
elations are reliably high in frontal associative regions ( Fig. 6. h), which
re known to develop later in life ( Sowell et al., 1999 ). 

We validated the structure of the templates by comparing the relative
olume of their cortical and subcortical regions. We further validated
hese templates functionally by assessing how the age impacts the source
stimation. We also verified that this modeling approach was producing
ensible results by comparing the estimated sources from these surface
odels against sources obtained using alternative FEM head models and

olume source models. A more complete validation could be performed
n the future by comparing these measures against a “gold standard ”.
or example, with respect to structural validation, the differences in the
elative size of brain regions between the templates could be compared
gainst normative curves extracted from a sample of individual infant
RIs. Further functional validation could rely on source reconstruction

sing individual subject head models or using experimental paradigms
or which the activated brain regions are well known (e.g., medial nerve
timulation). 

In the future, increased surface template accuracy may be achiev-
ble by using a surface-based registration directly rather than extract-
ng surfaces from a volume-based average ( Ghosh et al., 2010 ). It is
nclear, however, if such improvements would translate into a signifi-
ant improvement regarding EEG source estimation since the gain ob-
ained by increasing the template accuracy may be insignificant com-
ared to the difference between the population average template and
he brain of each individual participant. It would also be interesting
o investigate the extent to which the use of different templates would
ffect source imaging in studies using MEG instead of EEG, given that
hese two modalities measure fundamentally related but complementary
omponents of the electromagnetic fields produced by cerebral activity
 Hämäläinen et al., 1993 ; Sharon et al., 2007 ). 

Up to recently, no open-access population average surface models
ere available to estimate cortical sources in infants. By releasing these
3 new templates, we are making source reconstruction based on corti-
al surfaces accessible for situations where individual MRI are not avail-
ble and population averages are required, addressing a clear need in
he EEG and MEG community. Although these templates can be used
y any software package performing source reconstruction using sur-
ace templates, to allow researchers to easily benefit from them, we are
urrently working on integrating these templates directly within MNE-
ython and Brainstorm. This resource will undoubtedly come particu-
arly handy for cross-sectional and longitudinal studies of typical and
typical neurodevelopment. 

ata and code availability 

The code for building the templates and for reproduc-
ng the validation analyses is available on GitHub ( https:
/github.com/christian-oreilly/infant _ template _ paper ). The volumetric
verages and the final surface templates are available from the NMD
 https://jerlab.sc.edu/projects/neurodevelopmental-mri-database/ ) 
nd can be downloaded through the NeuroImaging Tools & Re-

https://github.com/christian-oreilly/infant_template_paper
https://jerlab.sc.edu/projects/neurodevelopmental-mri-database/
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ources Collaboratory ( https://www.nitrc.org/projects/neurodevdata ).
he surfaces templates are also available for download on GitHub
https://github.com/christian-oreilly/infant_template_paper) and they
re further being integrated to MNE-Python and Brainstorm for easier
se. 
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